精英家教网 > 高中数学 > 题目详情
已知f(x)=ex,g(x)=lnx.
(Ⅰ)求证:g(x)<x<f(x);
(Ⅱ)设直线l与f(x)、g(x)均相切,切点分别为(x1,f(x1))、(x2,g(x2)),且x1>x2>0,求证:x1>1.
分析:(Ⅰ)分别构造函数h(x)=f(x)-x=ex-x;u(x)=x-g(x)=x-lnx,利用导数研究其单调性、极值与最值即可证明;
(II)由于直线l与f(x)、g(x)均相切,利用导数的几何意义和斜率计算公式可得方程组:
ex1=
1
x2
     ①
lnx2-ex1
x2-x1
=ex1   ②
,再利用x1>x2>0,可得ex1>1,得到0<x2<1.再利用②得lnx2=ex1(x2-x1+1)<0,即可得到x2-x1+1<0.
解答:(Ⅰ)证明:令h(x)=f(x)-x=ex-x,h′(x)=ex-1,
令h′(x)=0,解得x=0.
当x<0时,h′(x)<0;当x>0时,h′(x)>0.
∴当x=0时,ymin=e0-0=1>0
∴ex>x.
令u(x)=x-g(x)=x-lnx,u(x)=1-
1
x
=
x-1
x
(x>0).
令u′(x)=0,解得x=1
当0<x<1时,u′(x)<0;当x>1时,u′(x)>0.
∴当x=1时,umin=1-ln1=1>0.
∴x>lnx,(x>0),
∴g(x)<x<f(x).
(Ⅱ)f'(x)=exg′(x)=
1
x

切点的坐标分别为(x1ex1),(x2,lnx2),可得方程组:
ex1=
1
x2
     ①
lnx2-ex1
x2-x1
=ex1   ②

∵x1>x2>0,
ex1>1,∴
1
x2
=ex1>1

∴0<x2<1.
由②得lnx2-ex1=ex1(x2-x1)
lnx2=ex1(x2-x1+1)
∵0<x2<1,∴lnx2<0,
∴x2-x1+1<0,即x1>x2+1>1.
∴x1>1.
点评:本题考查了利用导数研究函数的单调性极值与最值、构造函数证明不等式、导数的几何意义、斜率计算公式、指数函数与对数函数的单调性等基础知识与基本技能方法,属于难题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知f(x)=ex+e-x+2|x|,又不等式f(ax)>f(x-1)在x∈[
1
2
,+∞)
恒成立,则实数a的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=ex-ax-1.
(1)求f(x)的单调增区间;
(2)若f(x)在定义域R内单调递增,求a的取值范围;
(3)是否存在a,使f(x)在(-∞,0]上单调递减,在[0,+∞)上单调递增?若存在,求出a的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=ex,f(x)的导数为f'(x),则f'(-2)=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=ex-ax(e=2.718…)
(Ⅰ)讨论函数f(x)的单调区间;
(Ⅱ)若函数f(x)在区间(0,2)上有两个零点,求a的取值范围;
(Ⅲ) A(xl,yl),B(x2,y2)是f(x)的图象上任意两点,且x1<x2,若总存在xo∈R,使得f′(xo)=
y1-y2x1-x2
,求证:xo>xl

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=ex-ax-1.
(1)求f(x)的单调增区间;
(2)求证:ex>x+1(x≠0).

查看答案和解析>>

同步练习册答案