【题目】已知,函数,.
(1)若在上单调递增,求正数的最大值;
(2)若函数在内恰有一个零点,求的取值范围.
【答案】(1)(2)
【解析】
(1)求出的单调递增区间,令,得,可知区间,即可求出正数的最大值;(2)令,当时,,可将问题转化为在的零点问题,分类讨论即可求出答案.
解:(1)由,
得,.
因为在上单调递增,
令,得时单调递增,
所以解得,可得正数的最大值为.
(2),
设,当时,.它的图形如图所示.
又,则,,令,
则函数在内恰有一个零点,可知在内最多一个零点.
①当0为的零点时,显然不成立;
②当为的零点时,由,得,把代入中,
得,解得,,不符合题意.
③当零点在区间时,若,得,此时零点为1,即,由的图象可知不符合题意;
若,即,设的两根分别为,,由,且抛物线的对称轴为,则两根同时为正,要使在内恰有一个零点,则一个根在内,另一个根在内,
所以解得.
综上,的取值范围为.
科目:高中数学 来源: 题型:
【题目】①回归分析中,相关指数的值越大,说明残差平方和越大;
②对于相关系数,越接近1,相关程度越大,越接近0,相关程度越小;
③有一组样本数据得到的回归直线方程为,那么直线必经过点;
④是用来判断两个分类变量是否有关系的随机变量,只对于两个分类变量适合;
以上几种说法正确的序号是__________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某企业生产一种产品,质量测试分为:指标不小于为一等品;指标不小于且小于为二等品;指标小于为三等品。其中每件一等品可盈利元,每件二等品可盈利元,每件三等品亏损元。现对学徒甲和正式工人乙生产的产品各件的检测结果统计如下:
测试指标 | ||||||
甲 | ||||||
乙 |
根据上表统计得到甲、乙生产产品等级的频率分别估计为他们生产产品等级的概率。求:
(1)乙生产一件产品,盈利不小于元的概率;
(2)若甲、乙一天生产产品分别为件和件,估计甲、乙两人一天共为企业创收多少元?
(3)从甲测试指标为与乙测试指标为共件产品中选取件,求两件产品的测试指标差的绝对值大于的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数f(x)=2cos2x﹣cos(2x﹣).
(1)求f(x)的周期和最大值;
(2)已知△ABC中,角A.B.C的对边分别为A,B,C,若f(π﹣A)=,b+c=2,求a的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某学校为了了解该校学生对于某项运动的爱好是否与性别有关,通过随机抽查110名学生,得到如下的列联表:
喜欢该项运动 | 不喜欢该项运动 | 总计 | |
男 | 40 | 20 | 60 |
女 | 20 | 30 | 50 |
总计 | 60 | 50 | 110 |
由公式,算得
附表:
0.025 | 0.01 | 0.005 | |
5.024 | 6.635 | 7.879 |
参照附表,以下结论正确的是( )
A. 在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别有关”
B. 在犯错语的概率不超过0.1%的前提下,认为“爱好该项运动与性别有关”
C. 有99%以上的把握认为“爱好该项运动与性别无关”
D. 有99%以上的把握认为“爱好该项运动与性别有关”
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】过抛物线E:x2=2py(p>0)的焦点F作斜率率分别为k1 , k2的两条不同直线l1 , l2 , 且k1+k2=2.l1与E交于点A,B,l2与E交于C,D,以AB,CD为直径的圆M,圆N(M,N为圆心)的公共弦所在直线记为l.
(1)若k1>0,k2>0,证明: ;
(2)若点M到直线l的距离的最小值为 ,求抛物线E的方程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com