精英家教网 > 高中数学 > 题目详情
6.已知点${A}({0,2\sqrt{2}})$,抛物线y2=2px(p>0)的焦点为F,线段F A的中点B在抛物线上,若抛物线在点B处的切线与x轴交于点C,则△BFC的面积为$\frac{3\sqrt{2}}{4}$.

分析 先求出抛物线的方程,再求出抛物线在点B处的切线方程,即可求△BFC的面积.

解答 解:由题意F($\frac{p}{2}$,0),B($\frac{p}{4}$,$\sqrt{2}$),
∵B在抛物线上,
∴2=$\frac{{p}^{2}}{2}$,
∵p>0,
∴p=2,
∴抛物线y2=4x,B($\frac{1}{2}$,$\sqrt{2}$),
由y=2$\sqrt{x}$,可得y′=$\frac{1}{\sqrt{x}}$,x=$\frac{1}{2}$时,y′=$\sqrt{2}$,
∴抛物线在点B处的切线方程为y-$\sqrt{2}$=$\sqrt{2}$(x-$\frac{1}{2}$),
y=0时,x=-$\frac{1}{2}$,∴△BFC的面积为$\frac{1}{2}×(1+\frac{1}{2})×\sqrt{2}$=$\frac{3\sqrt{2}}{4}$.
故答案为:$\frac{3\sqrt{2}}{4}$.

点评 本题考查抛物线的方程,考查导数的几何意义,考查学生的计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.圆(x-1)2+(y-2)2=1关于直线x-y-2=0对称的圆的方程为(  )
A.(x-4)2+(y+1)2=1B.(x+4)2+(y+1)2=1C.(x+2)2+(y+4)2=1D.(x-2)2+(y+1)2=1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.若log${\;}_{\sqrt{3}}$x=4,则x=9.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知数列{an}的通项为an=$\frac{1}{cosncos(n+1)}$(n∈N*),求其前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.某中药种植基地有两处种植区的药材需在下周一、周二两天内采摘完毕,基地员工一天可以完成一处种植区的采摘,由于下雨会影响药材品质,基地收益如下表所示:
周一无雨无雨有雨有雨
周二无雨有雨无雨有雨
收益20万15万10万7.5万
若基地额外聘请工人,可在周一当天完成全部采摘任务;无雨时收益为20万元;有雨时收益为10万元,额外聘请工人的成本为a万元.已知下周一和下周二有雨的概率相同,两天是否下雨互不影响,基地收益为20万元的概率为0.36.(1)若不额外聘请工人,写出基地收益X的分布列及基地的预期收益;
(2)该基地是否应该外聘工人,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.在体积为V的平行六面体ABCD-A1B1C1D1中,P为其内一动点(包括表面),若$\overrightarrow{AP}$=x$\overrightarrow{AB}$+y$\overrightarrow{AD}$+z$\overrightarrow{A{A}_{1}}$,且x+y+z≤1,则点P所有的位置构成的几何体的体积是$\frac{1}{6}$V.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图,在△ABC中,AB=12,$AC=3\sqrt{6}$,$BC=5\sqrt{6}$,点D在边BC上,且∠ADC=60°.
(Ⅰ)求cosC;
(Ⅱ)求线段AD的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.(1)化简$\frac{1}{{sin{{10}°}}}-\frac{{\sqrt{3}}}{{sin{{80}°}}}$;
(2)已知$-\frac{π}{2}<x<0$,$sinx+cosx=\frac{1}{5}$,求$\frac{{sin2x+2{{sin}^2}x}}{1-tanx}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.若x,y满足约束条件$\left\{\begin{array}{l}x-y≤2\;,\;\;\\ 2x+y≥1\;,\;\;\\ y≤1\;,\;\;\end{array}\right.$则z=x+y的最大值为4.

查看答案和解析>>

同步练习册答案