精英家教网 > 高中数学 > 题目详情
12.已知函数f(x)在区间(-1,0)和(1,+∞)上递增,在区间(-∞,-1)和(0,1)上递减,则f(x)的解析式可以是f(x)=|x2-1|.(只需写出一个符合题意的解析式)

分析 根据函数单调性的性质求出函数的解析式即可.

解答 解:若函数f(x)在区间(-1,0)和(1,+∞)上递增,在区间(-∞,-1)和(0,1)上递减,
则函数的解析式可以是:f(x)=|x2-1|,
故答案为:f(x)=|x2-1|.

点评 本题考查了函数的单调性问题,考查常见函数的性质,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.如图,在直四棱柱ABCD-A1B1C1D1中,AB=AD=2,DC=2$\sqrt{3}$,AA1=$\sqrt{3}$,AD⊥DC,AC⊥BD,垂足为E,
(Ⅰ)求证:BD⊥A1C;
(Ⅱ)求二面角A1-BD-C1的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,在平面直角坐标系xOy中,已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的焦距为2,过右焦点F的直线l交椭圆于A、B两点,当l与x轴垂直时,AB长为$\frac{{4\sqrt{3}}}{3}$.   
(1)求椭圆的标准方程;
(2)若椭圆上存在一点P,使得$\overrightarrow{OP}=\overrightarrow{OA}+\overrightarrow{OB}$,求直线l的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知集合A={x|x2-3x+2<0},B={x|a-1<x<3a+1}.
(1)当a=$\frac{1}{4}$时,求A∩B;
(2)命题p:x∈A,命题q:x∈B,若q是p的必要条件,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知双曲线$\frac{x^2}{a^2}-{y^2}=1$的一条渐近线为$\sqrt{3}x+y=0$,则a=$\frac{{\sqrt{3}}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知集合A={0,2,4,6},B={x∈N|2x≤33},则集合A∩B的子集个数为(  )
A.6B.7C.8D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知集合M={x|y=ln(x2-3x-4)},N={y|y=2x-1},则M∩N等于(  )
A.{x|x>4}B.{x|x>0}C.{x|x<-1}D.{x|x>4或x<-1}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.给出下列三个命题:
①函数y=log2(x2-5x+6)的单调增区间是($\frac{5}{2}$,+∞)
②经过任意两点的直线,都可以用方程(y-y1)(x2-x1)=(x-x1)(y2-y1)来表示;
③命题p:“?x∈R,x2-x-1≤0”的否定是“?x0∈R,x${\;}_{0}^{2}$-x0-1>0”,
其中正确命题的个数有(  )个.
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知tanα=2,求下列各式的值
(1)$\frac{sinα+2cosα}{4cosα-sinα}$
(2)sinαcosα+cos2α

查看答案和解析>>

同步练习册答案