精英家教网 > 高中数学 > 题目详情
9.设函数f(x)=lnx+x2-2ax+a2,a∈R.
(1)当a=2时,求函数f(x)的单调区间;
(2)若函数f(x)在[1,3]上不存在单调增区间,求a的取值范围.

分析 (1)将a=2代入f(x),求出f(x)的导数,解关于导函数的不等式,求出函数的单调区间即可;
(2)假设函数f(x)在[1,3]上不存在单调递增区间,必有g(x)≤0,得到关于a的不等式组,解出即可.

解答 解:(1)a=2时,f(x)=lnx+x2-4x+4,(x>0),
f′(x)=$\frac{1}{x}$+2x-4=$\frac{{2x}^{2}-4x+1}{\;}$,
令f′(x)>0,解得:x>$\frac{2+\sqrt{2}}{2}$或x<$\frac{2-\sqrt{2}}{2}$,
令f′(x)<0,解得:$\frac{2-\sqrt{2}}{2}$<x<$\frac{2+\sqrt{2}}{2}$,
故f(x)在(0,$\frac{2-\sqrt{2}}{2}$)递增,在($\frac{2-\sqrt{2}}{2}$,$\frac{2+\sqrt{2}}{2}$)递减,在($\frac{2+\sqrt{2}}{2}$,+∞)递增;
(2)f′(x)=$\frac{1}{2}$+2x-2a=$\frac{{2x}^{2}-2ax+1}{x}$,x∈[1,3],
设g(x)=2x2-2ax+1,
假设函数f(x)在[1,3]上不存在单调递增区间,
必有g(x)≤0,
于是$\left\{\begin{array}{l}{g(1)=3-2a≤0}\\{g(3)=19-6a≤0}\end{array}\right.$,解得:a≥$\frac{19}{6}$.

点评 本题考查了函数的单调性问题,考查曲线的切线方程以及导数的应用,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.已知数列{an}的前n项和记为Sn,若a2=a+2(a为常数),且Sn是nan与na的等差中项.
(1)求a1,a3,a4
(2)猜想出an的表达式,并用数学归纳法进行证明.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.直线l?平面α,过空间任一点A且与l、α都成40°角的直线有且只有2条.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.某客运公司用A,B两种型号的车辆承担甲、乙两地间的长途客运业务,每车每天往返一次.A,B两种车辆的载客量分别为36人和60人,在甲地和乙地之间往返一次的营运成本分别为1600元/辆和2400元/辆.公司拟组建一个不超过21辆车的客运车队,并要求B型车不多于A型车7辆.若每天要运送不少于900人从甲地去乙地的旅客,并于当天返回,为使公司从甲地去乙地的营运成本最小,那么应配备A型车、B型车各多少辆?营运成本最小为多少元?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知等差数列{an}的前n项和为Sn,a1>0且$\frac{{a}_{6}}{{a}_{5}}$=$\frac{9}{11}$,则Sn为非负值的最大n值为20.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=|x-2|.
(1)解不等式f(x+1)+f(x+2)<4;
(2)若?x∈R使得f(ax)+|a|f(x)≤4成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.在圆x2+y2=4上任取一点P,过点P作x轴的垂线段PD,D为垂足.当点P在圆上运动时,线段PD的中点M的轨迹记作曲线C.
(1)求曲线C的方程;
(2)若点M在曲线C上,且MF1⊥MF2,求三角形△MF1F2的面积${S_{△M{F_1}{F_2}}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.若函数f(x)=x3-ax2-x+6在(0,1)上单调递减,则实数a取值范围是(  )
A.a=1B.a≥1C.a≤1D.0<a<1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知复数z满足(1+i)z=2,则z=1-i.

查看答案和解析>>

同步练习册答案