精英家教网 > 高中数学 > 题目详情

【题目】对于数列,定义的“优值”.现已知某数列的“优值”为 ,记数列的前项和为,若对一切的,都有恒成立,则实数的取值范围为___________.

【答案】

【解析】

本题可根据优值Hn的特点构造数列{bn}:令bn=2n-1annN*,然后可通过先求出数列{bn}的通项公式来求出数列{an}的通项公式,再可根据数列{an}的通项公式写出数列的前n项和Sn的表达式,根据Sn为递增数列转化为求Sn最值问题,由此可得m的取值范围.

由题意,可知对于数列:

.

.

可构造数列:,nN.

设数列的前n项和为Tn.

.nN.

∴①当n=1,

②当n≥2,.

由①②,可得:nN.

nN.

∴数列是以4为首项,2为公差的等差数列.

对于数列通项为:

,则单调递增,

恒成立,∴

故答案为:.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某种植园在芒果临近成熟时,随机从一些芒果树上摘下100个芒果,其质量分别在(单位:克)中,经统计得频率分布直方图如图所示.

1)经计算估计这组数据的中位数;

2)现按分层抽样从质量为的芒果中随机抽取6个,再从这6个中随机抽取3个,求这3个芒果中恰有1个在内的概率.

3)某经销商来收购芒果,以各组数据的中间数代表这组数据的平均值,用样本估计总体,该种植园中还未摘下的芒果大约还有10000个,经销商提出如下两种收购方案:

A:所有芒果以10/千克收购;

B:对质量低于250克的芒果以2/个收购,高于或等于250克的以3/个收购,通过计算确定种植园选择哪种方案获利更多?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】以直角坐标系的原点为极点,x轴的正半轴为极轴,建立坐标系,两个坐标系取相同的单位长度.已知直线的参数方程为,曲线的极坐标方程为

(1)求曲线的直角坐标方程

(2)设直线与曲线相交于两点,时,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,对于点,若函数满足:,都有,就称这个函数是点A限定函数”.以下函数:①,②,③,④,其中是原点O限定函数的序号是______.已知点在函数的图象上,若函数是点A限定函数,则实数a的取值范围是______.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知方程4个不同的根,则实数的取值范围是

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着科技的发展,网络已逐渐融入了人们的生活.网购是非常方便的购物方式,为了了解网购在我市的普及情况,某调查机构进行了有关网购的调查问卷,并从参与调查的市民中随机抽取了男女各100人进行分析,从而得到表(单位:人)

经常网购

偶尔或不用网购

合计

男性

50

100

女性

70

100

合计

(1)完成上表,并根据以上数据判断能否在犯错误的概率不超过0.01的前提下认为我市市民网购与性别有关?

(2)①现从所抽取的女市民中利用分层抽样的方法抽取10人,再从这10人中随机选取3人赠送优惠券,求选取的3人中至少有2人经常网购的概率;

②将频率视为概率,从我市所有参与调查的市民中随机抽取10人赠送礼品,记其中经常网购的人数为,求随机变量的数学期望和方差.

参考公式:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知在三棱台中,.

1)求证:

2)过的平面分别交于点,且分割三棱台所得两部分几何体的体积比为,几何体为棱柱,求的长.

提示:台体的体积公式分别为棱台的上、下底面面积,为棱台的高).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的短轴两端点与左焦点围成的三角形面积为3,短轴两端点与长轴一端点围成的三角形面积为2,设椭圆的左、右顶点分别为是椭圆上除两点外一动点.

1)求椭圆的方程;

2)过椭圆的左焦点作平行于直线是坐标原点)的直线与曲线交于两点,点关于原点的对称点为,求证:成等比数列.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设椭圆的离心率为,左、右焦点分别为,点D在椭圆C上, 的周长为.

1)求椭圆C的标准方程;

2)过圆上任意一点P作圆E的切线l,若l与椭圆C交于AB两点,O为坐标原点,求证:为定值.

查看答案和解析>>

同步练习册答案