精英家教网 > 高中数学 > 题目详情
幂函数y=
1
x
的图象及直线y=x,y=1,x=1将平面直角坐标系的第一象限分成如图所示的①~⑧八个部分,那么幂函数y=x
1
2
的图象经过其中的
②⑥
②⑥
部分.(填写序号)
分析:结合幂函数的五种形式,再代入
1
2
和2验证即可.
解答:解:取x=
1
2
得y=(
1
2
 
1
2
=
2
2
∈(0,1),故在第⑥部分;
再取x=2得y=2 
1
2
=
2
∈(1,2),故在第②部分.
故答案为:②⑥.
点评:本题考查幂函数的图象,考查对函数图象的分析和理解.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

下列命题:
①偶函数的图象一定与y轴相交;
②定义在R上的奇函数f(x)必满足f(0)=0;
③幂函数f(x)=
1x
在(-∞,0)∪(0,+∞)上是减函数;
④函数y=ax-5+1(a>0且a≠1)的图象必经过定点(5,1);
⑤函数y=log2(kx2+kx+1)的定义域为R,则实数k的范围为0<k<4.
其中真命题的序号是
 
(把你认为正确的命题的序号都填上).

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列说法:
①幂函数的图象一定不过第四象限;
②奇函数图象一定过坐标原点;
③y=x2-2|x|-3的递增区间为[1,+∞);
④定义在R上的函数f(x)对任意两个不等实数a、b,总有
f(a)-f(b)
a-b
>0
成立,则f(x)在R上是增函数;
f(x)=
1
x
的单调减区间是(-∞,0)∪(0,+∞).
正确的有
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知幂函数y=f(x)的导函数图象经过点(1,2),则f(x)的解析式为(  )
A、f(x)=2x
B、f(x)=x2
C、f(x)=2x
D、f(x)=
1
x

查看答案和解析>>

科目:高中数学 来源: 题型:

以下结论正确的有
②③
②③
(写出所有正确结论的序号)
①函数y=
1
x
在(-∞,0)∪(0,+∞)上是减函数;
②对于函数f(x)=-x2+1,当x1≠x2时,都有
f(x1)+f(x2)
2
<f(
x1+x2
2
);
③已知幂函数的图象过点(2,2 
3
5
),则当x>1时,该函数的图象始终在直线y=x的下方;
④奇函数的图象必过坐标原点.

查看答案和解析>>

同步练习册答案