精英家教网 > 高中数学 > 题目详情
11.A,B,C是球O上的三点,AB=10,AC=6,BC=8,球O的半径等于13,求球心O到平面ABC的距离.

分析 先确定△ABC的形状为Rt△,然后找出球心到平面ABC的距离,求解即可.

解答 解:∵62+82=102,∴△ABC为Rt△.
∵球心O在平面ABC内的射影M是截面圆的圆心,
∴M是AC的中点且OM⊥AC.
在Rt△OAM中,OM=$\sqrt{1{3}^{2}-{5}^{2}}$=12.
∴球心到平面ABC的距离为12.

点评 本题考查球的有关计算问题,点到平面的距离,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.已知f(x)+2f(2x-1)=3x+7,求一次函数f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.三角形△ABC的外接圆半径为1,圆心O,已知3$\overrightarrow{OA}$+4$\overrightarrow{OB}$+5$\overrightarrow{OC}$=$\overrightarrow{0}$,则$\overrightarrow{AB}$•$\overrightarrow{OC}$=$-\frac{1}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图,在三棱柱ABC-A1B1C1中,侧棱垂直于底面,AB⊥BC,E、F分别为A1C1、BC的中点.
(1)求证:C1F∥平面ABE;
(2)求证:平面ABE⊥平面B1BCC1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.函数y=x4+x2+1的值域是1,y=x4-x2+1的值域是$\frac{3}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知两点A(1,-2),B(-4,-2),以下四条曲线:
①4x+2y=3,②x2+y2=3,
③x2+2y2=3,④x2-2y=3.
其中存在点P,使|PA|=|PB|的曲线有①②③④.(填写正确的命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.设集合A={x|-1≤x≤2},B={x|0≤x≤4},则A∪B=(  )
A.{x|0≤x≤2}B.{x|1≤x≤2}C.{x|0≤x≤4}D.{x|-1≤x≤4}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知集合A={x|-1≤x-1<2},B={x|3≤2x-1<11}.求:
(1)A∩B;       
(2)A∪B.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知函数f(x)=$\sqrt{3}$sin(2x-$\frac{2}{3}$π),其中x∈R,则下列说法正确的序号为②④.
①函数f(x)的最小正周期为$\frac{π}{2}$;
②函数f(x)的振幅为$\sqrt{3}$;
③函数的图象是由y=$\sqrt{3}$sin2x图象向右平移$\frac{2π}{3}$;
④函数f(x)的一个单调递增区间为[$\frac{π}{12}$,$\frac{7π}{12}$].

查看答案和解析>>

同步练习册答案