精英家教网 > 高中数学 > 题目详情
16.已知函数$f(x)=\frac{4x-6}{x-1}$的定义域和值域都是[2,b](b>2),则实数b的值为3.

分析 由函数解析式画出函数图形,得到函数在[2,b]上为增函数,再由f(b)=b求得b值.

解答 解:$f(x)=\frac{4x-6}{x-1}$=$\frac{4(x-1)-2}{x-1}=-\frac{2}{x-1}+4$,
其图象如图,
由图可知,函数$f(x)=\frac{4x-6}{x-1}$在[2,b]上为增函数,
又函数$f(x)=\frac{4x-6}{x-1}$的定义域和值域都是[2,b](b>2),
∴f(b)=$\frac{4b-6}{b-1}=b$,解得:b=3.
故答案为:3.

点评 本题考查函数的定义域,考查了函数值域的求法,训练了利用函数的单调性求函数的值域,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

14.已知点A(2,1),B(-3,2),在x轴上一点P,使|PA|+|PB|最小,则点P的坐标为($\frac{1}{3}$,0).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知函数f(x)的图象关于y轴对称,且满足f(1+x)=f(1-x),当x∈[0,1]时,f(x)=x2,则函数f(x)在R上的解析式是f(x)=(x-2k)2,x∈[2k-1,2k+1],k∈Z,函数y=f(x)-log3x的零点有4个.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知f(x)=|2x-1|+x+3,若f(x)≥5,则x的取值范围是{x|x≥1,或x≤-1}.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.函数f(x)=1+ax-2(a>0,且a≠1)恒过定点(2,2).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.记函数f(x)=ax2+bx+c(a,b,c均为常数,且a≠0).
(1)若a=1,f(b)=f(c)(b≠c),求f(2)的值;
(2)若b=1,c=-a时,函数y=f(x)在区间[1,2]上的最大值为g(a),求g(a).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.下列函数在(-∞,0)∪(0,+∞)上既是偶函数,又在(0,+∞)上单调递增的是(  )
A.y=-x2B.y=x-1C.y=log2|x|D.y=-2x

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知a>b>0,且a+b=2,则$\frac{2}{a+3b}+\frac{1}{a-b}$的最小值为$\frac{3+2\sqrt{2}}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.下列四种说法:
①函数y=$\frac{{x}^{2}-x+4}{x-1}(x>1)$的最小值为5;
②等差数列{an}中,a1,a3,a4成等比数列,则公比为$\frac{1}{2}$;
③已知a>0,b>0,a+b=1,则$\frac{2}{a}+\frac{3}{b}$的最小值为5+2$\sqrt{6}$;
④在平面直角坐标系xOy中,已知平面区域A={(x,y)|x+y≤1,x≥0,y≥0},则平面区域B={(x+y,x-y)|(x,y)∈A}的面积是1.
其中正确的命题为①③④(填上所有正确命题的序号)

查看答案和解析>>

同步练习册答案