(本小题满分12分)
已知函数为自然对数的底数).
(Ⅰ)求F(x)=f(x)g(x)的单调区间,若F(x)有最值,请求出最值;
(Ⅱ)是否存在正常数,使f(x)与g(x)的图象有且只有一个公共点,且在该公共点处有共同的切线?若存在,求出的值,以及公共点坐标和公切线方程;若不存在,请说明理由.
(Ⅰ)所以当时,的单调递减区间为,单调递增区间为,最小值为,无最大值 ;
(Ⅱ)存在,使的图象有且只有一个公共点,且在该公共点处有共同的切线,易求得公共点坐标为,公切线方程为。
【解析】(1)求F(x)=f(x)-g(x)的单调区间,及函数F(x)的最值,考虑到先列出函数的表达式,再根据表达式求出导函数F′(x),根据导函数在区间的正负性判断函数的单调区间,再使导函数等于0求出函数的极值,即可得到答案.
(2)若f(x)与g(x)的图象有且只有一个公共点,则方程有且只有一解,所以函数F(x)有且只有一个零点,由(Ⅰ)的结论可知.当a=1时,求f(x)与g(x)的一个公共点,并求它们在该公共点处的切线方程,故根据(1)可判断方程F(x)=f(x)-g(x)有最小值0,故此点即为f(x)与g(x)的一个公共点.再根据导函数求出公共点处切线.即可根据直线方程的求法求出切线方程.
(Ⅰ)………… 1分
①当0时,恒成立,F(x)在(0,+)上是增函数,F(x)只有一个单调递增区间(0,+),没有最值.…………2分
②当时,,
若,则上单调递减;
若,则上单调递增,
∴当时,有极小值,也是最小值,
即 ………… 5分
所以当时,的单调递减区间为
单调递增区间为,最小值为,无最大值 ………… 6分
(Ⅱ)方法一,若f(x)与g(x)的图象有且只有一个公共点,
则方程有且只有一解,所以函数F(x)有且只有一个零点 …… 7分
由(Ⅰ)的结论可知 ………… 8分
此时,,
∴∴f(x)与g(x)的图象的唯一公共点坐标为
又,∴f(x)与g(x)的图象在点处有共同的切线,
其方程为,即 ………… 12分
综上所述,存在,使的图象有且只有一个公共点,且在该点处的公切线方程为 ………… 14分
方法二:设图象的公共点坐标为,
|
由②得,代入①得,从而 ………… 8分
此时由(1)可知,∴时,
因此除外,再没有其它,使 ………… 11分
故存在,使的图象有且只有一个公共点,且在该公共点处有共同的切线,易求得公共点坐标为,公切线方程为 ………… 12分
科目:高中数学 来源: 题型:
ON |
ON |
5 |
OM |
OT |
M1M |
N1N |
OP |
OA |
查看答案和解析>>
科目:高中数学 来源: 题型:
(2009湖南卷文)(本小题满分12分)
为拉动经济增长,某市决定新建一批重点工程,分别为基础设施工程、民生工程和产业建设工程三类,这三类工程所含项目的个数分别占总数的、、.现有3名工人独立地从中任选一个项目参与建设.求:
(I)他们选择的项目所属类别互不相同的概率; w.w.w.k.s.5.u.c.o.m
(II)至少有1人选择的项目属于民生工程的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
(本小题满分12分)
某民营企业生产A,B两种产品,根据市场调查和预测,A产品的利润与投资成正比,其关系如图1,B产品的利润与投资的算术平方根成正比,其关系如图2,
(注:利润与投资单位是万元)
(1)分别将A,B两种产品的利润表示为投资的函数,并写出它们的函数关系式.(2)该企业已筹集到10万元资金,并全部投入到A,B两种产品的生产,问:怎样分配这10万元投资,才能使企业获得最大利润,其最大利润为多少万元.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com