精英家教网 > 高中数学 > 题目详情

如图,三棱柱ABC-A1B1C1的所有棱长都是2,又AA1⊥平面ABC,D,E分别是AC,CC1的中点.

(1)求证:AE⊥平面A1BD.
(2)求二面角D-BA1-A的余弦值.
(3)求点B1到平面A1BD的距离.

(1)见解析  (2)   (3)

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

四棱锥S-ABCD中,底面ABCD为平行四边形,侧面SBC底面ABCD.已知ABC=45o,AB=2,BC=2,SA=SB=

(1)证明:SABC;
(2)求直线SD与平面SAB所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在四棱锥中,侧面底面,,底面是直角梯形,,,,

(1)求证:平面;
(2)设为侧棱上一点,,试确定的值,使得二面角

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图所示的多面体中, 是菱形,是矩形,平面

(1) 求证:平面平面
(2) 若二面角为直二面角,求直线与平面所成的角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图甲,在平面四边形ABCD中,已知∠A=45°,∠C=90°,∠ADC=105°,AB=BD,现将四边形ABCD沿BD折起,使平面ABD⊥平面BDC(如图乙),设点E、F分别为棱AC、AD的中点.

(1)求证:DC⊥平面ABC;
(2)求BF与平面ABC所成角的正弦值;
(3)求二面角B-EF-A的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,矩形所在的平面和平面互相垂直,等腰梯形中,=2,分别为的中点,为底面的重心.

(1)求证:∥平面
(2)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在直三棱柱(侧棱和底面垂直的棱柱)中,,,且满足.

(1)求证:平面侧面
(2)求二面角的平面角的余弦值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,正方形ADEF与梯形ABCD所在的平面互相垂直,,点M在线段EC上(除端点外)

(1)当点M为EC中点时,求证:平面
(2)若平面与平面ABF所成二面角为锐角,且该二面角的余弦值为时,求三棱锥的体积

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,直三棱柱ABC-A1B1C1中,△ABC是等边三角形,DBC的中点.

(1)求证:A1B∥平面ADC1
(2)若ABBB1=2,求A1D与平面AC1D所成角的正弦值.

查看答案和解析>>

同步练习册答案