精英家教网 > 高中数学 > 题目详情

【题目】如图所示,将四棱锥S-ABCD的每一个顶点染上一种颜色,并使同一条棱上的两端异色,如果只有5种色可供使用,则不同的染色方法种数为(

A.240B.360C.420D.960

【答案】C

【解析】

可分为两大步进行,先将四棱锥一侧面三顶点染色,然后再分类考虑另外两顶点的染色数,用分步乘法原理即可得出结论.

由题设,四棱锥S-ABCD的顶点SAB所染的颜色互不相同,它们共有种染色方法.

5种颜色为12345,当SAB染好时,不妨设其颜色分别为123

C2,则D可染345,有3种染法;

C4,则D可染35,有2种染法,若C5,则D可染34,有2种染法.

可见,当SAB已染好时,CD还有7种染法,故不同的染色方法有(种).

故选:C

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在梯形中,,四边形是菱形,.

(Ⅰ)求证:

(Ⅱ)求二面角的平面角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知四棱锥,底面为正方形,且底面的平面与侧面的交线为且满足表示的面积.

(1)证明: 平面

(2)当时,二面角的余弦值为的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的定义域为R,且的图像过点.

1)求实数b的值;

2)若函数上单调递增,求实数a的取值范围;

3)是否存在实数a,使函数R上的最大值为?若存在,求出a的值;若不存在,请说明理由?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线C=2px经过点(1,2).过点Q(0,1)的直线l与抛物线C有两个不同的交点AB且直线PAy轴于M直线PBy轴于N

求直线l的斜率的取值范围

O为原点求证为定值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数.

(Ⅰ)若曲线在点处的切线斜率为0,求a

(Ⅱ)若处取得极小值,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列四个命题

①函数与函数表示同一个函数;

②奇函数的图像一定通过直角坐标系的原点;

③若函数的定义域为,则函数的定义域为

④设函数是在区间上图像连续的函数,且,则方程在区间上至少有一实根;

其中正确命题的序号是(

A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我国自改革开放以来,生活越来越好,肥胖问题也目渐显著,为分析肥胖程度对总胆固醇与空腹血糖的影响,在肥胖人群中随机抽出8人,他们的肥胖指数值、总胆固醇指标值单位: )、空腹血糖指标值(单位: )如下表所示:

(1)用变量的相关系数,分别说明指标值与值、指标值与值的相关程度;

(2)求的线性回归方程,已知指标值超过5.2为总胆固醇偏高,据此模型分析当值达到多大时,需要注意监控总胆固醇偏高情况的出现(上述数据均要精确到0.01)

参考公式:相关系数

.

参考数据:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线的参数方程: 为参数),曲线的参数方程: 为参数),且直线交曲线两点.

(1)将曲线的参数方程化为普通方程,并求时, 的长度;

(2)巳知点,求当直线倾斜角变化时, 的范围.

查看答案和解析>>

同步练习册答案