【题目】已知f(x)=3|x+2|﹣|x﹣4|.
(1)求不等式f(x)>2的解集;
(2)设m,n,k为正实数,且m+n+k=f(0),求证:mn+mk+nk≤ .
【答案】
(1)解:∵f(x)=3|x+2|﹣|x﹣4|.
当x<﹣2时,﹣3(x+2)+(x﹣4)>2,解得x<﹣6.
∴x<﹣6
当﹣2≤x≤4时,3(x+2)+(x﹣4)>2,解得x>0,
∴0<x≤4.
当x>4时,3(x+2)﹣(x﹣4)>2,解得x>﹣4,
∴x>4.
综上可得:不等式的解集是{x|x<﹣6,或x>0}.
(2)证明:m+n+k=f(0)=2,m,n,k为正实数,
∴(m+n+k)2=4,展开可得:m2+n2+k2+2mn+2mk+2nk=4,
∴m2+n2+k2=4﹣2(mn+mk+nk),
∵m2+n2≥2mn,m2+k2≥2mk,n2+k2≥2nk,
∴m2+n2+k2≥mn+nk+mk,
∴4﹣2(mn+mk+nk)≥mn+nk+mk,
∴mn+mk+nk ,当且仅当m=n=k= 时取等号
【解析】(1)f(x)=3|x+2|﹣|x﹣4|.对x分类讨论:当x<﹣2时;当﹣2≤x≤4时;当x>4时,即可得出不等式的解集.(2)由m+n+k=f(0)=2,m,n,k为正实数,平方展开可得:m2+n2+k2+2mn+2mk+2nk=4,m2+n2+k2=4﹣2(mn+mk+nk),利用重要不等式的性质可得:m2+n2+k2≥mn+nk+mk,代入解出即可得出.
【考点精析】根据题目的已知条件,利用绝对值不等式的解法的相关知识可以得到问题的答案,需要掌握含绝对值不等式的解法:定义法、平方法、同解变形法,其同解定理有;规律:关键是去掉绝对值的符号.
科目:高中数学 来源: 题型:
【题目】已知, ,其中是自然常数, .
(1)当时,求的极值,并证明恒成立;
(2)是否存在实数,使的最小值为 ?若存在,求出的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在平面直角坐标系中,曲线的普通方程为,曲线的参数方程为为参数),以坐标原点为极点, 轴正半轴为极轴建立极坐标系.
(1)求曲线的极坐标方程;
(2)求曲线与焦点的极坐标,其中.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在平行六面体ABCD﹣A1B1C1D1中,AA1⊥平面ABCD,且AB=AD=2,AA1= ,∠BAD=120°.
(1)求异面直线A1B与AC1所成角的余弦值;
(2)求二面角B﹣A1D﹣A的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=x2﹣|x2﹣ax﹣2|,a为实数.
(1)当a=1时,求函数f(x)在[0,3]上的最小值和最大值;
(2)若函数f(x)在(﹣∞,﹣1)和(2,+∞)上单调递增,求实数a的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com