精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆分别为椭圆长轴的左、右端点,为直线上异于点的任意一点,连接交椭圆于.

1)若,求直线的方程;

2)是否存在轴上的定点使得以为直径的圆恒过的交点?如果存在,请求出定点的坐标;如果不存在,请说明理由.

【答案】1;(2)存在,.

【解析】

1)根据,可得,利用坐标计算,可得点,代入椭圆方程,然后可得,最后可得直线的斜率并得方程.

2)假设直线的方程,然后分别与联立,可得,然后假设点的坐标,根据,可得结果.

解:(1)设.

.

整理得 .

代入椭圆方程解得:

.

故直线的方程为.

2)方法一:

由题可知:直线的斜率存在

设直线的方程为

.

.

.

假设存在定点满足要求,则.

.

,整理得.

存在轴上的定点,使得以为直径的圆恒过的交点.

方法二:

假设存在定点满足要求,设

则由以为直径的圆通过的交点得

整理得

,整理得 .

将②代入①,有,解得.

存在轴上的定点,使得以为直径的圆恒过的交点

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】关于函数有下述四个结论:

是偶函数;的最大值为

个零点;在区间单调递增.

其中所有正确结论的编号是(

A.①②B.①③C.②④D.①④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】n个不同的实数a1a2an可得n!个不同的排列,每个排列为一行写成一个n!行的数阵.对第iai1ai2ain,记bi=ai1+2ai23ai3+…+(1)nnaini=123…n.例如用123可得数阵如图,对于此数阵中每一列各数之和都是12,所以bl+b2+…b6=12+2×123×12=24.那么,在用12345形成的数阵中,b1+b2+…b120等于(

A.3600B.1800C.1080D.720

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】20201月底因新型冠状病毒感染的肺炎疫情形势严峻,避免外出是减少相互交叉感染最有效的方式.在家中适当锻炼,合理休息,能够提高自身免疫力,抵抗该种病毒.某小区为了调查家居民的运动情况,从该小区随机抽取了100位成年人,记录了他们某天的锻炼时间,其频率分布直方图如下:

1)求a的值,并估计这100位居民锻炼时间的平均值(同一组中的数据用该组区间的中点值代表);

2)小张是该小区的一位居民,他记录了自己7天的锻炼时长:

序号n

1

2

3

4

5

6

7

锻炼时长m(单位:分钟)

10

15

12

20

30

25

35

)根据数据求m关于n的线性回归方程;

)若是(1)中的平均值),则当天被称为有效运动日.估计小张家第8天是否是有效运动日

附;在线性回归方程中,

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线的焦点为,过点的直线交抛物线于两点,以线段为直径的圆交轴于两点,设线段的中点为,则(

A.

B.,则直线的斜率为

C.若抛物线上存在一点到焦点的距离等于,则抛物线的方程为

D.若点到抛物线准线的距离为,则的最小值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在传染病学中,通常把从致病刺激物侵入机体或者对机体发生作用起,到机体出现反应或开始呈现该疾病对应的相关症状时止的这一阶段称为潜伏期.

(1)一研究团队统计了某地区1000名患者的相关信息,得到如下表格,

该传染病的潜伏期受诸多因素影响,为研究潜伏期与患者年龄的关系,以潜伏期是否超过6天为标准进行分层抽样,从上述1000名患者中抽取200人,得到如下列联表,请将列联表补充完整,并根据列联表判断是否有95%的把握认为潜伏期与患者年龄有关

潜伏期≤6

潜伏期>6

总计

50岁以上(含50岁)

100

50岁以下

55

总计

200

(2)以这1000名患者的潜伏期超过6天的频率,代替该地区1名患者潜伏期超过6天发生的概率,每名患者的潜伏期是否超过6天相互独立.为了深入研究,该研究团队随机调查了20名患者,其中潜伏期超过6天的人数最有可能(即概率最大)是多少?

附:下面的临界值表仅供参考.

0.05

0.025

0.010

3.841

5.024

6.635

(参考公式:,其中.)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于无穷数列的某一项,若存在,有成立,则称具有性质.

1)设,若对任意的都具有性质,求的最小值;

2)设等差数列的首项,公差为,前项和为,若对任意的数列中的项都具有性质,求实数的取值范围;

3)设数列的首项,当时,存在满足,且此数列中恰有一项不具有性质,求此数列的前项和的最大值和最小值以及取得最值时对应的的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率,直线相交于两点,当时,

1)求椭圆的标准方程.

2)在椭圆上是否存在点,使得当时,的平分线总是平行于轴?若存在,求出点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知abc均为正数,设函数fx)=|xb||x+c|+axR

1)若a2b2c2,求不等式fx)<3的解集;

2)若函数fx)的最大值为1,证明:

查看答案和解析>>

同步练习册答案