精英家教网 > 高中数学 > 题目详情

【题目】已知点是长轴长为的椭圆 上异于顶点的一个动点, 为坐标原点, 为椭圆的右顶点,点为线段的中点,且直线的斜率之积恒为.

(1)求椭圆的方程;

(2)设过左焦点且不与坐标轴垂直的直线交椭圆于两点,线段的垂直平分线与轴交于点,点横坐标的取值范围是,求的最小值.

【答案】(Ⅰ);(Ⅱ)

【解析】试题分析:(1)利用斜率公式化简条件:直线的斜率之积恒为 ,变形成椭圆标准方程形式,即得结果,(2)将直线方程与椭圆方程联立,结合韦达定理以及弦长公式可得关于直线斜率的函数关系式,再根据中点坐标公式列出线段的垂直平分线,并求与轴交点横坐标,根据横坐标的取值范围,确定直线斜率取值范围,最后根据直线斜率取值范围确定的最小值.

试题解析:(Ⅰ)∵椭圆的长轴长为,∴

∵直线的斜率之积恒为,∴

,∴

故椭圆的方程为.

(Ⅱ) 设直线方程为,代入

中点

.

的垂直平分线方程为

,得

,∴,∴

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某校高三数学竞赛初赛考试后,对部分考生的成绩进行统计(考生成绩均不低于90分,满分150分),将成绩按如下方式分成六组,若第四、五、六组的人数依次成等差数列,且第六组有4人.

(1)请补充完整频率分布直方图,并估计这组数据的平均数M;

(2)现根据初赛成绩从第四组和第六组中任意选2人,记他们的成绩分别为.若,则称此二人为“黄金帮扶组”.试求选出的二人为“黄金帮扶组”的概率

(3)以此样本的频率当做概率,现随机在这所有考生中选出3名学生,求成绩不低于120分的人数的分布列及期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了解某班学生喜爱打篮球是否与性别有关,对本班50人进行了问卷调查得到了如下列表:


喜爱打篮球

不喜爱打篮球

合计

男生


5


女生

10



合计



50

已知在全班50人中随机抽取1人,抽到喜爱打篮球的学生的概率为

1)请将上表补充完整(不用写计算过程);

2)能否有99.5%的把握认为喜爱打篮球与性别有关?说明你的理由.

下面的临界值表供参考:


0.15

0.10

0.05

0.025

0.010

0.005

0.001


2.072

2.706

3.841

5.024

6.635

7.879

10.828

(参考公式: ,其中

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)若,求曲线在点处的切线;

2)若函数在其定义域内为增函数,求正实数的取值范围;

3)设函数,若在上至少存在一点,使得成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙二人做射击游戏,甲、乙射击击中与否是相互独立事件.规则如下:若射击一次击中,则原射击人继续射击;若射击一次不中,就由对方接替射击.已知甲、乙二人射击一次击中的概率均为,且第一次由甲开始射击.①求前3次射击中甲恰好击中2次的概率____________;②求第4次由甲射击的概率________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)|xa|

(1)若不等式f(x)3的解集为{x|1x5}求实数a的值

(2)(1)的条件下f(x)f(x5)m对一切实数x恒成立求实数m的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面为正方形, 底面 为棱中点.

(1)求证: 平面

(2)求四棱锥外接球的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某品牌手机销售商今年1,2,3月份的销售量分别是1万部,1.2万部,1.3万部,为估计以后每个月的销售量,以这三个月的销售为依据,用一个函数模拟该品牌手机的销售量y(单位:万部)与月份x之间的关系,现从二次函数 或函数 中选用一个效果好的函数行模拟,如果4月份的销售量为1.37万件,则5月份的销售量为__________万件.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)若,求的单调区间;

2)若在区间上是增函数,求实数的取值范围.

查看答案和解析>>

同步练习册答案