精英家教网 > 高中数学 > 题目详情
精英家教网(1)如图,平行四边形ABCD中,M、N分别为DC、BC的中点,已知
AM
=
c
AN
=
d
,试用
c
d
表示
AB
AD

(2)在△ABC中,若
AB
=
a
AC
=
b
若P,Q,S为线段BC的四等分点,试证:
AP
+
AQ
+
AS
=
3
2
(
a
+
b
)
分析:(1)由M、N分别为DC、BC的中点,则
DM
=
1
2
AB
,我们易根据向量加法的三角形法则,用
c
d
表示
AB
AD

(2)由
AB
=
a
AC
=
b
,我们易将向量
AP
AQ
AS
,用
a
b
表示,利用向量加减法的运算法则,易得到
AP
+
AQ
+
AS
=
3
2
(
a
+
b
)
解答:解:(1)由
DM
=
1
2
AB
BN
=
1
2
AD

c
=
AD
+
DM
d
=
AB
+
BN

c
=
AD
+
1
2
AB
d
=
AB
+
1
2
AD

解得:
AB
=
4
3
d
-
2
3
c

AD
=
4
3
c
-
2
3
d
(7分)
(2)证明:
AP
=
3
4
AB
+
1
4
AC
AQ
=
1
2
AB
+
1
2
AC
AC
=
1
4
AB
+
3
4
AC

AP
+
AQ
+
AC
=
3
2
(
AB
+
AC
)

AP
+
AQ
+
AC
=
3
2
(
a
+
b
)
(14分)
点评:本题考查的知识点是向量加减混合运算及其几何意义,利用向量加减法的三角形法则,及数乘向量运算法则,将平面内任一向量分解为用基底向量表示的形式,是解答本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源:2012-2013学年山东省济宁市曲阜市高三(上)11月月考数学试卷(理科)(解析版) 题型:选择题

如图,平行四边开ABCD中,AB=2,AD=1,∠A=60°,点M在AB边上,且AM=AB,则•等于( )

A.-1
B.1
C.-
D.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年福建省厦门市高三(上)期末数学试卷(理科)(解析版) 题型:选择题

如图,平行四边开ABCD中,AB=2,AD=1,∠A=60°,点M在AB边上,且AM=AB,则•等于( )

A.-1
B.1
C.-
D.

查看答案和解析>>

科目:高中数学 来源:2013年山东省淄博市高考数学二模试卷(理科)(解析版) 题型:选择题

如图,平行四边开ABCD中,AB=2,AD=1,∠A=60°,点M在AB边上,且AM=AB,则•等于( )

A.-1
B.1
C.-
D.

查看答案和解析>>

科目:高中数学 来源:2013年山东省淄博市高考数学二模试卷(文科)(解析版) 题型:选择题

如图,平行四边开ABCD中,AB=2,AD=1,∠A=60°,点M在AB边上,且AM=AB,则•等于( )

A.-1
B.1
C.-
D.

查看答案和解析>>

科目:高中数学 来源:2013年山东省高考数学预测试卷(06)(解析版) 题型:选择题

如图,平行四边开ABCD中,AB=2,AD=1,∠A=60°,点M在AB边上,且AM=AB,则•等于( )

A.-1
B.1
C.-
D.

查看答案和解析>>

同步练习册答案