【题目】已知函数的图象与轴正半轴交点的横坐标依次构成一个公差为的等差数列,把函数的图象沿轴向右平移个单位,得到函数的图象,则下列叙述不正确的是( )
A. 的图象关于点对称 B. 的图象关于直线对称
C. 在上是增函数 D. 是奇函数
科目:高中数学 来源: 题型:
【题目】椭圆C: 的左、右顶点分别为A1、A2,点P在C上且直线PA2的斜率的取值范围是[-2,-1],那么直线PA1斜率的取值范围是________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2017年5月14日,第一届“一带一路”国际高峰论坛在北京举行,为了解不同年龄的人对“一带一路”关注程度,某机构随机抽取了年龄在岁之间的100人进行调查,并按年龄绘制成频率分布直方图,如图所示,其分组区间为: , ,,,,.把年龄落在区间和内的人分别称为“青少年”和“中老年”.
(1)根据频率分布直方图求样本的中位数(保留两位小数)和众数
(2)根据已知条件完成下面的2×2列联表,并判断能否有99%的把握认为关注“带一路”是否和年龄段有关?
关注 | 不关注 | 合计 | |
青少年 | 15 | ||
中老年 | |||
合计 | 50 | 50 | 100 |
附:参考公式,其中
临界值表:
/td> | 0.05 | 0.010 | 0.001 |
3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
已知曲线的极坐标方程为,以极点为平面直角坐标系的原点,极轴为的正半轴,建立平面直角坐标系.
(1)若曲线为参数)与曲线相交于两点,求;
(2)若是曲线上的动点,且点的直角坐标为,求的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某超市在2017年五一正式开业,开业期间举行开业大酬宾活动,规定:一次购买总额在区间内者可以参与一次抽奖,根据统计发现参与一次抽奖的顾客每次购买金额分布情况如下:
(1)求参与一次抽奖的顾客购买金额的平均数与中位数(同一组中的数据用该组区间的中点值作代表,结果保留到整数);
(2)若根据超市的经营规律,购买金额与平均利润有以下四组数据:
试根据所给数据,建立关于的线性回归方程,并根据(1)中计算的结果估计超市对每位顾客所得的利润.
参考公式: , .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知长方体,直线与平面所成角为垂直于点为的中点.
(1)求直线与平面所成角的正弦值;
(2)线段上是否存在点,使得二面角的余弦值为?若存在,确定点位置;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆: 过点,且离心率为.过点的直线与椭圆交于, 两点.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)若点为椭圆的右顶点,探究: 是否为定值,若是,求出该定值,若不是,请说明理由.(其中, , 分别是直线、的斜率)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com