精英家教网 > 高中数学 > 题目详情
14.如图,过双曲线的右焦点F分别作两条渐近线的垂线,垂足为M、N,若$\overrightarrow{FM}$•$\overrightarrow{FN}$<0,则此双曲线离心率的取值范围是(  )
A.(1,$\sqrt{2}$)B.(1,2)C.($\sqrt{2}$,+∞)D.(2,+∞)

分析 由题意,∠MFO>45°,可得∠MOF<45°,$\frac{b}{a}$<1,利用e2=1+$\frac{{b}^{2}}{{a}^{2}}$,即可得出结论.

解答 解:由题意,∠MFO>45°,
∴∠MOF<45°,
∴$\frac{b}{a}$<1,
∴e2=1+$\frac{{b}^{2}}{{a}^{2}}$<2,
∵e>1,
∴1<e<$\sqrt{2}$,
故选:A.

点评 本题考查双曲线的方程与性质,考查学生的计算能力,确定∠MOF<45°,$\frac{b}{a}$<1,利用e2=1+$\frac{{b}^{2}}{{a}^{2}}$是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.如图,在四棱锥P-ABCD中,PA⊥平面ABCD,底面ABCD为梯形,AD∥BC,且AB=2BC=4,PA=AD=3,∠ABC=60°,E是BC的中点.
(1)求证:AD⊥平面PAC;
(2)试在线段PD上确定一点G,使CG∥平面PAE,并求此时AD与平面AGC所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.在棱长为40m的正方体AG1H1D-GA1D1H中,E、E1、F1、F分别是AG、G1A1、H1D1、DH的中点,B、B1是EE1上的点,C、C1是FF1上的点,且EB=E1B1=FC=F1C1=10m,求证:平面ABCD∥平面A1B1C1D1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知$\frac{z-1}{z+1}$为纯虚数,且(z+1)($\overline{z}$+1)=|z|2,求复数z.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.集合A={1,2,3,…,2n,2n+1}的子集B满足,对任意的x,y∈B,x+y∉B,求集合B中元素个数的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.函数y=|x-2|-|x+1|的取值范围为[-3,3].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.对于任意的三个正数a,b,c,求证:a+b+c≥$\sqrt{ab}$+$\sqrt{bc}$+$\sqrt{ca}$,并指出等号成立的条件.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知:如图△OAB为等腰三角形,底边AB角⊙O于点C,D,求证:AC=BD.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.若函数y=sin($\frac{π}{3}$-2x),则函数在[-π,0]上的单调递减区间是[-$\frac{π}{12}$,0]和,[-π,-$\frac{7π}{12}$].

查看答案和解析>>

同步练习册答案