精英家教网 > 高中数学 > 题目详情
8.有下列四个命题,其中真命题有:
①“若x+y=0,则x、y互为相反数”的逆命题
②“全等三角形的面积相等”的否命题
③“若q≤1,则x2+2x+q=0有实根”的逆命题
④“不等边三角形的三个内角相等”的逆否命题,其中真命题的序号为(  )
A.①③B.②③C.①②D.③④

分析 ①原命题的逆命题为“若x与y互为相反数,则x+y=0”,即可判断出正误;
②原命题的否命题为:“不全等三角形的面积不相等”,不正确;
③原命题的逆命题为“若x2+2x+q=0有实根,则q≤1”,由△≥0,解得q≤1,即可判断出正误;
④原命题的逆否命题:“三个内角不相等的三角形是等边三角形”,利用等边三角形的定义即可判断出正误.

解答 解:①“若x+y=0,则x与y互为相反数”的逆命题为“若x与y互为相反数,则x+y=0”,正确;
②“全等三角形的面积相等”的否命题为:“不全等三角形的面积不相等”,不正确;
③“若q≤1,则x2+2x+q=0有实根”的逆命题为“若x2+2x+q=0有实根,则q≤1”,由△=4-4q≥0,解得q≤1,因此正确;
④“不等边三角形的三个内角相等”的逆否命题:“三个内角不相等的三角形是等边三角形”,是假命题.
故选:A.

点评 本题考查了简易逻辑的判定方法、一元二次方程的实数根与判别式的关系等基础知识,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=$\frac{1}{2}$-$\frac{b}{{2}^{x}+a}$是R上的奇函数,且f(1)=$\frac{1}{6}$.
(1)求函数f(x)的解析式;
(2)判断f(x)在R上的单调性并用定义证明;
(3)当x∈[1,2]时,f(x)>-x2+2x+m恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.下列命题中:
①若a+b不是偶数,则a,b不都是奇数;
②抛物线y=$\frac{1}{4}$x2的焦点坐标是($\frac{1}{16}$,0);
③若p∧q为假命题,则p、q均为假命题;
④若椭圆$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{25}$=1的两焦点为F1、F2,且弦AB过F1点,则△ABF2的周长为20.  
其中正确的命题的序号是①④(填上你认为正确命题的所有序号).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.某分公司经销某种品牌产品,每件产品的成本为3元,并且每件产品需向总公司交a元(2≤a≤5)的管理费,预计当每件产品的售价为x元(9≤x≤11)时,一年的销售量为(12-x)万件.
(Ⅰ)求分公司一年的利润L(万元)与每件产品的售价x的函数关系式;
(Ⅱ)当每件产品的售价为多少元时,分公司一年的利润L最大,并求出L的最大值Q(a).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知F为椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的一个焦点,A1、A2为椭圆长轴的两个端点,P为椭圆上任一点,分别以PF、A1A2为直径作圆,则两圆的位置关系为(  )
A.相交B.相切C.相离D.内含

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=$\frac{1}{2}$sin(ωx+$\frac{π}{6}$)+$\frac{\sqrt{3}}{2}cos(ωx+\frac{π}{6})$(0<ω<3)的图象过点A($\frac{π}{4}$,0).
(1)求f(x)的最小正周期;
(2)记g(x)=f(x)+sin2x,若α∈(0,π),且g($\frac{α}{2}$)=0,求α的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知集合A={x|2≤x<7},B={x|3<x<10},
(1)求A∪B
(2)(∁RA)∩B.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.计算:(xnex)′=nxn-1ex+xnex

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.设函数f(x)=log2$\frac{x}{8}$•log2(2x).
(1)求函数f(x)的单调区间.
(2)若$\frac{1}{8}$≤x≤4,求f(x)的值域.

查看答案和解析>>

同步练习册答案