精英家教网 > 高中数学 > 题目详情

【题目】已知p:关于x的方程ax2+2x+1=0至少有一个负根,q:a≤1,则¬p是¬q的(
A.充要条件
B.充分不必要条件
C.必要不充分条件
D.不充分也不必要条件

【答案】A
【解析】解:对于p:关于x的方程ax2+2x+1=0至少有一个负实根,可分如下两种情况:(1)当a=0时,方程是一个直线,可知有一个负实根(2)当a≠0,当关于x的方程ax2+2x+1=0有实根,△≥0,解可得a≤1;①当关于x的方程ax2+2x+1=0有一个负实根,有 <0,解可得a<0;②当关于x的方程ax2+2x+1=0有二个负实根,有 ,解可得a>0;,
即有a≠0且a≤1
综上可得,a≤1;
q与p的范围完全相同,
故¬p是¬q的充要条件,
故选:A.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知数列{an}的首项a1aSn是数列{an}的前n项和,且满足: 3n2anan≠0n≥2nN*

(1)若数列{an}是等差数列,求a的值;

(2)确定a的取值集合M,使a∈M时,数列{an}是递增数列.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列命题中,真命题的是(
A.已知f(x)=sin2x+ ,则f(x)的最小值是2
B.已知数列{an}的通项公式为an=n+ ,则{an}的最小项为2
C.已知实数x,y满足x+y=2,则xy的最大值是1
D.已知实数x,y满足xy=1,则x+y的最小值是2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线y2=2px(p>0)的焦点为F,直线y=x﹣8与此抛物线交于A、B两点,与x轴交于点C,O为坐标原点,若 =3
(1)求此抛物线的方程;
(2)求证:OA⊥OB.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,AB为圆O的直径,点E、F在圆O上,AB∥EF,矩形ABCD所在的平面与圆O所在的平面互相垂直.已知AB=2,EF=1.
(Ⅰ)求证:平面DAF⊥平面CBF;
(Ⅱ)求直线AB与平面CBF所成角的大小;
(Ⅲ)当AD的长为何值时,平面DFC与平面FCB所成的锐二面角的大小为60°?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若数列{an}的前n项和为Sn , 满足a1=1,Sn=an+1+n,则其通项公式为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分16分)已知数列 )满足 其中

1)当时,求关于的表达式,并求的取值范围;

2)设集合

,求证:

是否存在实数 ,使 都属于?若存在,请求出实数 ;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=x2﹣ax+b.
(1)若不等式f(x)<0的解集是{x|2<x<3},求不等式bx2﹣ax+1>0的解集;
(2)当b=3﹣a时,对任意的x∈(﹣1,0]都有f(x)≥0成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=alnx+x2 (a为实常数).
(1)当a=﹣4时,求函数f(x)的单调区间;
(2)当x∈[1,e]时,讨论方程f(x)=0根的个数;
(3)若 a>0,且对任意的x1 , x2∈[1,e],都有|f(x1)﹣f(x2)| ,求实数a的取值范围.

查看答案和解析>>

同步练习册答案