精英家教网 > 高中数学 > 题目详情

【题目】已知过定点P(-2,1)作直线l分别与x、y轴交于A、B两点,

(1)求经过点P且在两坐标轴上的截距相等的直线l方程.

(2)求使面积为4时的直线l方程。

【答案】(1)y=x+3或y=x;(2)y=(x+2)+1或y=(x+2)+1.

【解析】试题分析:(1)设出直线方程,求出横纵截距令其相等2k+1=-2-,即可的解;

(2)根据题意有S=|2k+1||-2-|=4即可解得.

试题解析:

(1)由题意设l为y-1=k(x+2)

令x=0,解得y=2k+1, 令y=0,解得x=-2-则2k+1=-2-,解得k=1或k=

所以直线l的方程为y=x+3或y=x

(2)S=|2k+1||-2-|=4,解得k=,k=

所以直线l的方程为y=(x+2)+1或y=(x+2)+1.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,椭圆()的离心率是,过点(,)的动直线与椭圆相交于,两点,当直线平行于轴时,直线被椭圆截得的线段长为

求椭圆的方程:

已知为椭圆的左端点,: 是否存在直线使得的面积为?若不存在,说明理由,若存在,求出直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知

1)写出的解析式与定义域

2)画出函数的图像;

3)试讨论方程的根的个数

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱柱的底面是边长为2的正三角形且侧棱垂直于底面,侧棱长是 的中点.

(1)求证: 平面

(2)求二面角的大小;

(3)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某地随着经济的发展,居民收入逐年增长,下表是该地一建设银行连续五年的储蓄存款(年底余额),如下表1:

年份

2011

2012

2013

2014

2015

储蓄存款(千亿元)

5

6

7

8

10

为了研究计算的方便,工作人员将上表的数据进行了处理,得到下表2:

时间代号

1

2

3

4

5

0

1

2

3

5

)求关于的线性回归方程;

)通过()中的方程,求出关于的回归方程;

)用所求回归方程预测到2020年年底,该地储蓄存款额可达多少?

(附:对于线性回归方程

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】国际奥委会将于2017年9月15日在秘鲁利马召开130次会议决定2024年第33届奥运会举办地。目前德国汉堡、美国波士顿等申办城市因市民担心赛事费用超支而相继退出。某机构为调查我国公民对申办奥运会的态度,选了某小区的100位居民调查结果统计如下:

(1)根据已有数据,把表格数据填写完整;

(2)能否在犯错误的概率不超过5%的前提下认为不同年龄与支持申办奥运无关?

(3)已知在被调查的年龄大于50岁的支持者中有5名女性,其中2位是女教师,现从这5名女性中随机抽取3人,求至多有1位教师的概率.

附: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设U=R,集合A={x|x2+3x+2=0},B={x|x2+(m+1)x+m=0},若(A)B=,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱柱中,侧棱垂直底面,是棱的中点

(Ⅰ)证明:平面平面

(Ⅱ)平面分此棱柱为两部分,求这两部分体积比

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)求曲线在点处的切线方程;

2)若.

i)求实数的最大值;

ii)证明不等式: .

查看答案和解析>>

同步练习册答案