精英家教网 > 高中数学 > 题目详情

已知f(x)是偶函数,且f(x)在[0,+∞)上是增函数,若x∈时,不等式f(1+xlog2a)≤f(x-2)恒成立,求实数a的取值范围.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

函数的定义域为,若存在常数,使得对一切实数均成立,则称为“圆锥托底型”函数.
(1)判断函数是否为“圆锥托底型”函数?并说明理由.
(2)若是“圆锥托底型” 函数,求出的最大值.
(3)问实数满足什么条件,是“圆锥托底型” 函数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数对任意实数恒有且当时,有.
(1)判断的奇偶性;
(2)求在区间上的最大值;
(3)解关于的不等式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数f(x)是定义在(-1,1)上的偶函数,在(0,1)上是增函数,若f(a-2)-f(4-a2)<0,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

判断函数f(x)=ex在区间(0,+∞)上的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
⑴ 判断函数的单调性,并证明;
⑵ 求函数的最大值和最小值

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知定义域为R的函数f(x)=是奇函数.
(1)求a,b的值.
(2)用定义证明f(x)在(-∞,+∞)上为减函数.
(3)若对于任意t∈R,不等式f(t2-2t)+f(2t2-k)<0恒成立,求k的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知,函数.

(1)当时,画出函数的大致图像;
(2)当时,根据图像写出函数的单调减区间,并用定义证明你的结论;
(3)试讨论关于x的方程解的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

求二次函数f(x)=x2-4x-1在区间[t,t+2]上的最小值g(t),其中t∈R.

查看答案和解析>>

同步练习册答案