精英家教网 > 高中数学 > 题目详情
10.已知$sin(\frac{2π}{3}+α)=\frac{1}{3}$,则$cos(\frac{5π}{6}-α)$=(  )
A.$-\frac{1}{3}$B.$\frac{1}{3}$C.$-\frac{{2\sqrt{2}}}{3}$D.$\frac{{2\sqrt{2}}}{3}$

分析 由已知利用诱导公式化简可得cos($\frac{π}{6}$+α)=$\frac{1}{3}$,进而利用诱导公式化简所求即可得解.

解答 解:∵$sin(\frac{2π}{3}+α)=\frac{1}{3}$=sin($\frac{π}{2}$+$\frac{π}{6}$+α),
∴cos($\frac{π}{6}$+α)=$\frac{1}{3}$,
∴$cos(\frac{5π}{6}-α)$=cos(π-$\frac{π}{6}$-α)=-cos($\frac{π}{6}$+α)=-$\frac{1}{3}$.
故选:A.

点评 本题主要考查了诱导公式在三角函数化简求值中的应用,考查了转化思想,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.下列函数中,在(0,$\frac{π}{2}$)上是增函数的偶函数是(  )
A.y=|sinx|B.y=|sin2x|C.y=|cosx|D.y=tanx

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知等比数列{an}中,a2+a5=18,a3•a4=32,若an=128,则n=(  )
A.8B.7C.6D.5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图,在平行四边形ABCD中,E、F分别为BC与DC中点,G为BF与DE交点,若$\overrightarrow{AB}=\overrightarrow a$,$\overrightarrow{AD}=\overrightarrow b$,试以$\overrightarrow a$,$\overrightarrow b$为基底表示下面向量
(1)$\overrightarrow{DB}$
(2)$\overrightarrow{AC}$
(3)$\overrightarrow{DE}$
(4)$\overrightarrow{CG}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.在直角坐标xOy中,圆C1:(x+$\sqrt{3}$)2+y2=4,曲线C2的参数方程为$\left\{\begin{array}{l}{x=2+2cosθ}\\{y=2sinθ}\end{array}\right.$(θ为参数),并以O为极点,x轴正半轴为极轴建立极坐标系.
(1)写出C1的极坐标方程,并将C2化为普通方程;
(2)若直线C3的极坐标方程为θ=$\frac{π}{3}$(ρ∈R),C2与C3相交于A,B两点,求△ABC1的面积(C1为圆C1的圆心).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数y=acosx+b的最大值为1,最小值为-3,试确定$f(x)=bsin(ax+\frac{π}{3})$的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.△ABC中,已知a=7,b=14,A=30°,则△ABC有(  )
A.一解B.二解C.无解D.一解或二解

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.向如图所示的正方形OABC内任意投一点,该点恰好落在图中阴影部分的概率为(  )
A.$\frac{1}{2}$B.$\frac{1}{3}$C.$\frac{1}{4}$D.$\frac{1}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.若∅?{x|x2≤a,a∈R},则实数a的取值范围是[0,+∞).

查看答案和解析>>

同步练习册答案