精英家教网 > 高中数学 > 题目详情

设函数。(1)求不等式的解集;(2)求函数的最小值

(1)

(2)


解析:

(1)(1)当x<-0.5时,

,解得x<-7;

当-0.5≤x≤4时,

,解得x≤4;

x>4时,

,解得x>4。

综上所述,可得(5分)

(2)有(1)中的公式可知,当x<-0.5时,fx)>

当-0.5≤x≤4时,fx)≤9;

x>4时,fx)>9。

综上所述,可得。  (5分)

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设f(x)是定义在区间(-∞,+∞)上以2为周期的函数,对k∈Z,用Ik表示区间(2k-1,2k+1],已知当x∈I0时,f(x)=x2
(1)求f(x)在Ik上的解析表达式;
(2)对自然数k,求集合Mk={a|使方程f(x)=ax在Ik上有两个不等的实根}

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数f(x)=ax2+x.
(1)设函数g(x)=(1-2t)x+t2-1,当a=1,函数h(x)=f(x)+g(x)在区间(-2,4)内有两个相异的零点,求实数t的取值范围.
(2)当a>0,求证对任意两个不等的实数x1,x2,都有f(
x1+x2
2
)<
f(x1)+f(x2)
2

(3)若x∈[0,1]时,-1≤f(x)≤1,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设a、b、c∈R,函数f(x)=x3+ax2+bx+c在x=1和x=3取得极值
(1)求a、b的值;
(2)若方程f(x)=0有3个不等实根,求c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a>0且a≠1,设命题p:函数y=logax在x∈(0,+∞)上是减少的;命题q:方程x2+ax+1=0有不等的两个实数解.若“p或q”为真,“p且q”为假,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源:2010-2011学年江西省高三上学期第三次月考数学文卷 题型:解答题

(14分)设函数

(1)求的单调区间;

(2)若,不等式恒成立,求实数m的取值范围;

(3)若方程在区间[0, 2] 恰有两个不等实根,求a的取值范围。

 

查看答案和解析>>

同步练习册答案