【题目】某工件的三视图如图所示,现将该工件通过切割,加工成一个体积尽可能大的长方体新工件,并使新工件的一个面落在原工件的一个面内,则原工件材料的利用率为(材料利用率=)
A.
B.
C.
D.
科目:高中数学 来源: 题型:
【题目】已知,函数.
(1)当时,解不等式;
(2)若关于的方程的解集中恰有一个元素,求的取值范围;
(3)设,若对任意,函数在区间上的最大值与最小值的差不超过1,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】
(2015·重庆)如题(21)图,椭圆的左右焦点分别为且过的直线交椭圆于两点,
且。
(1)若求椭圆的标准方程。
(2)若,且,试确定椭圆离心率的取值范围。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(2015·陕西)设某校新、老校区之间开车单程所需时间为T,T只与道路畅通状况有关,对其容量为100的样本进行统计,结果如下:
T(分钟) | 25 | 30 | 35 | 40 |
频数(次) | 20 | 30 | 40 | 10 |
(1)求T的分布列与数学期望ET;
(2)刘教授驾车从老校区出发,前往新校区做一个50分钟的讲座,结束后立即返回老校区,求刘教授从离开老校区到返回老校区共用时间不超过120分钟的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】A,B两组各有7位病人,他们服用某种药物后的康复时间(单位:天)记录如下:
A组:10,11,12,13,14,15,16
B组:12,13,15,16,17,14,a
假设所有病人的康复时间互相独立,从A,B两组随机各选1人,A组选出的人记为甲,B组选出的人记为乙.
(Ⅰ)求甲的康复时间不少于14天的概率;
(Ⅱ)如果人康复时间的方差相等?(结论不要求证明)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知四棱台上、下底面分别是边长为3和6的正方形,,且
底面,点,分别在棱,上.
(1)若是是的中点,证明:;
(2若//平面,二面角的余弦值为,求四面体的体积
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数f(x)=x3+ax2+bx+c.
(1)求曲线y=f(x)在点(0,f(0))处的切线方程;
(2)设a=b=4,若函数f(x)有三个不同零点,求c的取值范围;
(3)求证:a2﹣3b>0是f(x)有三个不同零点的必要而不充分条件.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图1,在Rt△ABC中,∠C=90°,AC=4,BC=2,D,E分别为边AC,AB的中点,点F,G分别为线段CD,BE的中点.将△ADE沿DE折起到△A1DE的位置,使∠A1DC=60°.点Q为线段A1B上的一点,如图2.
(Ⅰ)求证:A1F⊥BE;
(Ⅱ)线段A1B上是否存在点Q使得FQ∥平面A1DE?若存在,求出A1Q的长,若不存在,请说明理由;
(Ⅲ)当 时,求直线GQ与平面A1DE所成角的大小.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com