精英家教网 > 高中数学 > 题目详情

【题目】如图:双曲线:的左、右焦点分别为,,过作直线轴于点.

(1)当直线平行于的一条渐近线时,求点到直线的距离;

(2)当直线的斜率为时,在右支上是否存在点,满足?若存在,求出点的坐标;若不存在,说明理由;

(3)若直线交于不同两点,且上存在一点,满足(其中为坐标原点),求直线的方程.

【答案】(1)(2)在双曲线的右支上不存在点,满足,详见解析(3)

【解析】

(1) 双曲线:的左、右焦点分别为,,,,的渐近线方程为,由对称性可知:,根据点到直线的距离公式,即可求得答案;

(2) 直线的斜率为时,的方程为,设右支上的点的坐标为,则,由,得,结合已知,即可求得答案;

(3) 设:,联立的方程,得,根据韦达定理,结合已知,即可求得答案.

(1) 双曲线:的左、右焦点分别为,

,,的渐近线方程为,

由对称性可知,即,

的距离.

(2)当直线的斜率为时,的方程为,故,

,故,

右支上的点的坐标为,则,

,得,即:

消去

,

由根与系数的关系知,此方程无正根

在双曲线的右支上不存在点,满足.

3)设,,则,

点在曲线上,故

:.

联立的方程,得,

由于交于不同两点,

,

,

从而①即为,

解得.

即直线的方程为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,圆,以坐标原点为极点,轴正半轴为极轴,直线的极坐标方程为,直线交圆两点,中点.

1)求点轨迹的极坐标方程;

2)若,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,AB为椭圆的左、右顶点,直线过椭圆C的右焦点F且交椭圆于PQ两点.连结并延长交直线于点M.

1)若直线的斜率为,求直线的方程;

2)求证:AQM三点共线.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】河北省高考综合改革从2018年秋季入学的高一年级学生开始实施,新高考将实行“3+1+2”模式,其中3表示语文、数学、外语三科必选,1表示从物理、历史两科中选择一科,2表示从化学、生物、政治、地理四科中选择两科.某校2018级入学的高一学生选科情况如下表:

选科组合

物化生

物化政

物化地

物生政

物生地

物政地

史政地

史政化

史生政

史地化

史地生

史化生

合计

130

45

55

30

25

15

30

10

40

10

15

20

425

100

45

50

35

35

35

40

20

55

15

25

20

475

合计

230

90

105

65

60

50

70

30

95

25

40

40

900

1)完成下面的列联表,并判断是否在犯错误概率不超过0.01的前提下,认为“选择物理与学生的性别有关”?

2)以频率估计概率,从该校2018级高一学生中随机抽取3名同学,设这三名同学中选择物理的人数为,求的分布列和数学期望.

选择物理

不选择物理

合计

425

475

合计

900

附表及公式:

0.150

0.100

0.050

0.010

2.072

2.706

3.841

6.635

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,曲线C的参数方程为,(θ为参数),以原点为极点,x轴非负半轴为极轴建立极坐标系.

1)求曲线C的极坐标方程;

2)在平面直角坐标系xOy中,A(﹣20),B0,﹣2),M是曲线C上任意一点,求ABM面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图是国家统计局给出的2014年至2018年我国城乡就业人员数量的统计图表,结合这张图表,以下说法错误的是(

A.2017年就业人员数量是最多的

B.2017年至2018年就业人员数量呈递减状态

C.2016年至2017年就业人员数量与前两年比较,增加速度减缓

D.2018年就业人员数量比2014年就业人员数量增长超过400万人

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为两个随机事件,给出以下命题:(1)若为互斥事件,且,则;(2)若,则为相互独立事件;(3)若,则为相互独立事件;(4)若,则为相互独立事件;(5)若,则为相互独立事件;其中正确命题的个数为( )

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆)的一个焦点与抛物线的焦点重合,且离心率为.

1)求椭圆的标准方程;

2)过焦点的直线与抛物线交于两点,与椭圆交于两点,满足,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设中心在原点O焦点在x轴上的椭圆C过点FC的右焦点,⊙F的方程为

1)求C的方程;

2)若直线与⊙O相切,与⊙F交于MN两点,与C交于PQ两点,其中MP在第一象限,记⊙O的面积为,求取最大值时,直线l的方程.

查看答案和解析>>

同步练习册答案