精英家教网 > 高中数学 > 题目详情
8.已知{an}是各项项都为正数的数列,其前n项和为Sn,且满足2anSn-an2=1
(Ⅰ)证明{Sn2}是等差数列,并求数列{an}的通项公式;
(Ⅱ)求数列{Sn2xn-1}的前n项和Tn

分析 (Ⅰ)把an=Sn-Sn-1(n≥2)代入2anSn-an2=1,整理后即可证明{Sn2}是等差数列,求其通项公式后再由an=Sn-Sn-1(n≥2)求数列{an}的通项公式;
(Ⅱ)把Sn2=n代入Sn2xn-1,对x分类后借助于等比数列的前n项和求得数列{Sn2xn-1}的前n项和Tn

解答 (Ⅰ)证明:∵2anSn-an2=1,
∴当n≥2时,2(Sn-Sn-1)Sn-$({S}_{n}-{S}_{n-1})^{2}=1$,
整理得,${{S}_{n}}^{2}-{{S}_{n-1}}^{2}=1$(n≥2),
又${{S}_{1}}^{2}$=1,
∴数列{Sn2}为首项和公差都是1的等差数列.
∴${{S}_{n}}^{2}=n$,
又Sn>0,∴Sn=$\sqrt{n}$.
∴n≥2时,an=Sn-Sn-1=$\sqrt{n}-\sqrt{n-1}$,又a1=S1=1适合此式.
∴数列{an}的通项公式为an=$\sqrt{n}-\sqrt{n-1}$;
(Ⅱ)解:Sn2xn-1=n•xn-1
当x=0时,Tn=0;
当x=1时,Tn=1+2+…+n=$\frac{n(n+1)}{2}$;
当x≠0且x≠1时,
Tn=1•x0+2•x1+3•x2+…+n•xn-1
$x{T}_{n}=1•{x}^{1}+2•{x}^{2}+3•{x}^{3}+…+(n-1){x}^{n-1}+n{x}^{n}$.
两式作差得:$(1-x){T}_{n}=1+x+{x}^{2}+…+{x}^{n-1}-n{x}^{n}$=$\frac{1-{x}^{n}}{1-x}-n{x}^{n}$.
∴${T}_{n}=\frac{1-{x}^{n}}{(1-x)^{2}}-\frac{n{x}^{n}}{1-x}$.
综上,当x=0时,Tn=0;
当x=1时,Tn=$\frac{n(n+1)}{2}$;
当x≠0且x≠1时,${T}_{n}=\frac{1-{x}^{n}}{(1-x)^{2}}-\frac{n{x}^{n}}{1-x}$.

点评 本题考查数列递推式,考查了等差关系的确定,训练了等比数列前n项和的求法,体现了分类讨论的数学思想方法,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.已知α,β是平面,m,n是直线,给出下列命题:
①若m⊥α,m?β,则α⊥β;
②若m?α,n?α,m∥β,n∥β,则α∥β;
③若m?α,n?α,m,n是异面直线,那么n与α相交;
④若α∩β=m,n∥m,则n∥α且n∥β
其中正确的命题的个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知点(a,b)在圆(x-1)2+(y-1)2=1上,则ab的最大值是$\frac{{3+2\sqrt{2}}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.设函数h(x)=x2-mx,g(x)=lnx.
(Ⅰ)设f(t)=m${∫}_{\frac{π}{2}}^{t}$(sinx+cosx)dx且f(2016π)=2,若函数h(x)与g(x)在x=x0处的切线平行,求这两切线间的距离;
(Ⅱ)任意x>0,不等式h(x)≥g(x)恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.若函数f(x)=ax-b的图象如图所示,则(  )
A.a>1,b>1B.a>1,0<b<1C.0<a<1,b>1D.0<a<1,0<b<1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知点A(4,3),P是双曲线x2-y2=2右支上一点,F为双曲线的右焦点,则|PA|+|PF|的最小值是(  )
A.$2\sqrt{5}-3$B.$3\sqrt{5}-2\sqrt{2}$C.$3\sqrt{2}+2$D.$2\sqrt{5}+\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.设数列{an}的前n项和为Sn,且 Sn=n2-4n+4,求数列{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.若y=f(x)与y=g(x)是[a,b]上的两条光滑曲线,则这两条曲线及x=a,x=b所围成的平面图形的面积为(  )
A.$f_a^b(f(x)-g(x))dx$B.$f_a^b(g(x)-f(x))dx$C.$f_a^b|{f(x)-g(x)}|dx$D.$|{f_a^b(f(x)-g(x))dx}|$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.(1)${({\frac{1}{8}})^{-\frac{2}{3}}}-\root{4}{{{{({-3})}^4}}}+{({2\frac{1}{4}})^{\frac{1}{2}}}-{(1.5)^2}$
(2)${log_3}\sqrt{27}+lg25+lg4+{7^{{{log}_7}2}}+{(-9.8)^0}$.

查看答案和解析>>

同步练习册答案