精英家教网 > 高中数学 > 题目详情

如图所示,四棱锥中,底面是边长为的正方形,侧棱底面,且的中点.
(1)证明:平面
(2)求三棱锥的体积.

(1)证明详见解析;(2).

解析试题分析:(1)要证平面,由于平面,故只须在平面内找到一条直线与平行即可,而这一条直线就是平面与平面的交线,故连接,设其交于点,进而根据平面几何的知识即可证明,从而就证明了平面;(2)根据已知条件及棱锥的体积计算公式可得,进而代入数值进行运算即可.
(1)证明:连结,交
因为底面为正方形, 所以的中点.又因为的中点,
所以
因为平面,平面, 所以平面        6分
(2)因为侧棱底面,所以三棱锥的高为,而底面积为,所以       13分.
考点:1.空间中的平行关系;2.空间几何体的体积.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

四面体及其三视图如图所示,过棱的中点作平行于的平面分
别交四面体的棱于点.

(1)证明:四边形是矩形;
(2)求直线与平面夹角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知正三棱锥V-ABC的正视图、侧视图和俯视图如图所示.

(1)画出该三棱锥的直观图;
(2)求出侧视图的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知平面平面,且四边形为矩形,四边形为直角梯形,
,,,,.
(1)作出这个几何体的三视图(不要求写作法).
(2)设是直线上的动点,判断并证明直线与直线的位置关系.
(3)求直线与平面所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(2014·贵阳模拟)一个几何体是由圆柱ADD1A1和三棱锥E-ABC组合而成,点A,B,C在圆O的圆周上,其正(主)视图,侧(左)视图的面积分别为10和12,如图所示,其中EA⊥平面ABC,AB⊥AC,AB=AC.AE=2.

(1)求证:AC⊥BD.
(2)求三棱锥E-BCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在直角梯形中,°,平面,设的中点为

(1) 求证:平面
(2) 求四棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四棱锥P-ABCD中,PD⊥平面ABCD,四边形ABCD是菱形,AC=6,BD=8,E是PB上任意一点,△AEC面积的最小值是3.

(1)求证:AC⊥DE;
(2)求四棱锥P-ABCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在三棱柱中,侧棱底面, 的中点,.

(1)求证:平面
(2)若,求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

一个正方体的各定点均在同一球的球面上,若该球的体积为,则该正方体的表面积为                   .

查看答案和解析>>

同步练习册答案