精英家教网 > 高中数学 > 题目详情
20.已知x>0,y>0,且x+y+xy=1,则xy的最大值为(  )
A.1+$\sqrt{3}$B.$\sqrt{3}$-1C.4-2$\sqrt{3}$D.3-2$\sqrt{2}$

分析 利用基本不等式的性质、一元二次不等式的解法即可得出.

解答 解:∵x>0,y>0,且x+y+xy=1,
∴2$\sqrt{xy}$+xy≤1,当且仅当x=y=$\sqrt{2}$-1时取等号.
设$\sqrt{xy}$=t,t>0,
则t2+2t-2≤0
解得0<t≤$\sqrt{2}$-1.
则xy的最大值为($\sqrt{2}$-1)2=3-2$\sqrt{2}$,
故选:D.

点评 本题考查了基本不等式的性质、一元二次不等式的解法,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.如图所示,点P在边长为1的正方形的边上运动,设M是CD边的中点,则当P沿着A-B-C-M运动时,以点P经过的路程x为自变量,三角形APM的面积为y,函数y=f(x)的图象大致是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.线性回归方程表示的直线=a+bx,必定过(  )
A.(0,0)点B.( $\overline{x}$,$\overline{y}$) 点C.(0,$\overline{y}$)点D.( $\overline{x}$,0)点

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知$f(x)=\frac{1}{2}{x^2}+2mlnx-(2+m)x,m∈R$.
(I)当m>0时,讨论f(x)的单调性;
(II)若对任意的a,b∈(0,+∞)且a>b有f(a)-f(b)>m(b-a)恒成立,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=ax-lnx(a∈R).
(1)当a=1时,求f(x)的最小值;
(2)若存在x∈[1,3],使$\frac{f(x)}{{x}^{2}}$+lnx=2成立,求a的取值范围;
(3)若对任意的x∈[1,+∞),有f(x)≥f($\frac{1}{x}$)成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知抛物线C1:y2=4x的焦点F也是椭圆${C_2}:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的一个焦点,C1与C2的公共弦长为$2\sqrt{6}$,过点F的直线l与C1相交于A,B两点,与C2相交于C,D两点,且$\overrightarrow{AC}$与$\overrightarrow{BD}$同向.
(1)求C2的方程;
(2)若|AC|=|BD|,求直线l的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.在如图所示的四棱锥S-ABCD中,∠DAB=∠ABC=90°,SA=AB=BC=1,AD=3.
(1)在棱SA上确定一点M,使得BM∥平面SCD,保留作图痕迹,并证明你的结论.
(2)当SA⊥平面ABCD且点E为线段BS的三等分点(靠近B)时,求三棱锥S-AEC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.高三学生在新的学期里,刚刚搬入新教室,随着楼层的升高,上下楼耗费的精力增多,因此不满意度升高,当教室在第n层楼时,上下楼造成的不满意度为n,但高处空气清新,嘈杂音较小,环境较为安静,因此随教室所在楼层升高,环境不满意度降低,设教室在第n层楼时,环境不满意度为$\frac{8}{n}$,则同学们认为最适宜的教室应在(  )
A.2楼B.3楼C.4楼D.8楼

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.若抛物线y2=2mx的准线方程为x=-3,则实数m的值为(  )
A.-6B.-$\frac{1}{6}$C.$\frac{1}{6}$D.6

查看答案和解析>>

同步练习册答案