精英家教网 > 高中数学 > 题目详情
20.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1\;\;(a>b>0)$的右焦点为F(1,0),离心率为$\frac{1}{2}$.
(Ⅰ)求椭圆C的方程;
(Ⅱ)过F且斜率为1的直线交椭圆于M,N两点,P是直线x=4上任意一点.求证:直线PM,PF,PN的斜率成等差数列.

分析 (1)由交点坐标,离心率可求得a、c、b,即可写出椭圆方程;
(2)设出A,B,P,F的坐标,写出直线MN的方程,联立椭圆方程,消去x,得到含y的方程,运用韦达定理和斜率公式,化简整理,结合等差数列的性质,即可得证.

解答 解:(Ⅰ)由已知得:a=2,$\frac{c}{a}=\frac{1}{2}$,所以 b2=3
所以椭圆的标准方程为$\frac{x^2}{4}+\frac{y^2}{3}=1$…(4分)
(Ⅱ)设M(x1,y1),N(x2,y2),P(4,n)
设直线MN的方程为:y=x-1…(6分)
由$\left\{\begin{array}{l}y=x-1\\ \frac{x^2}{4}+\frac{y^2}{3}=1\end{array}\right.$得:7x2-8x-8=0…(7分)
${x_1}+{x_2}=\frac{8}{7}$,${x_1}•{x_2}=-\frac{8}{7}$…(8分)
${k_{PM}}+{k_{PN}}=\;\frac{{{y_1}-n}}{{{x_1}-4}}+\frac{{{y_2}-n}}{{{x_2}-4}}=\;\frac{{({y_1}-n)({x_2}-4)+({y_2}-n)({x_1}-4)}}{{({x_1}-4)({x_2}-4)}}$…(9分)
=$\frac{{8\;n-n({x_1}+{x_2})-4({x_1}+{x_2}-2)+2{x_1}{x_2}-({x_1}+{x_2})}}{{{x_1}{x_2}-4({x_1}+{x_2})+16}}$
=$\frac{{8\;n-\frac{8}{7}n+\frac{24}{7}-\frac{16}{7}-\frac{8}{7}}}{{-\frac{8}{7}-\frac{32}{7}+16}}$=$\frac{2n}{3}$
因为${k_{PF}}=\frac{n}{3}$,所以2kPF=kPM+kPN…(12分)
所以直线PM,PF,PN的斜率成等差数列.…(13分)

点评 本题主要考查直线与圆锥曲线的综合应用能力,具体涉及到椭圆方程的求法、直线的方程和等差数列的性质及直线与椭圆的相关知识,解题时要注意合理地进行等价转化.属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.在△ABC中,角A,B,C的对边分别为a,b,c,且sinA+cos2$\frac{B+C}{2}$=1,D为BC上一点,且$\overrightarrow{AD}=\frac{1}{4}\overrightarrow{AB}+\frac{3}{4}\overrightarrow{AC}$.
(1)求sinA的值;
(2)若a=4$\sqrt{2}$,b=5,求AD的长.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.下列命题:
①“全等三角形的面积相等”的逆命题;
②“正角形的三个角均为60°”的否命题;
③“若x2+y2=0,则x=y=0”的逆否命题;
④若x≤-3,则x2+x-6≥0;
其中真命题的个数是3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图,在三棱柱V-ABC中,平面VAB⊥平面ABC,△VAB为等边三角形,AC⊥BC且AC=BC=$\sqrt{2}$,O,M分别为AB,VA的中点.
(1)求证:AB∥MOC;
(2)求证:平面MOC⊥平面VAB;
(3)求二面角M-OC-A的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知过点P(1,0)的直线l交圆O:x2+y2=1于A,B两点,$|AB|=\sqrt{2}$,则直线l的方程为x-y-1=0或x+y-1=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.复数z=$\frac{3+2i}{i}$ (i为虚数单位)的虚部为(  )
A.3B.-3C.-3iD.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.直三棱柱A1B1C1-ABC,∠BCA=90°,点D1,F1分别是A1B1,A1C1的中点,BC=CA=CC1,则BD1与AF1所成角的余弦值是(  )
A.$\frac{1}{2}$B.$\frac{{\sqrt{30}}}{10}$C.$\frac{{\sqrt{30}}}{15}$D.$\frac{{\sqrt{15}}}{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知向量$\overrightarrow{a}$=(sinθ,1),$\overrightarrow{b}$=(0,cosθ),θ∈[-$\frac{π}{2}$,$\frac{π}{2}$],则|$\overrightarrow{a}$+$\overrightarrow{b}$|的取值范围是(  )
A.[0,$\sqrt{2}$]B.[0,2]C.[1,2]D.[$\sqrt{2}$,2]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.设m,n(3≤m≤n)是正整数,数列Am:a1,a2,…,am,其中ai(1≤i≤m)是集合{1,2,3,…,n}中互不相同的元素.若数列Am满足:只要存在i,j(1≤i<j≤m)使ai+aj≤n,总存在k(1≤k≤m)有ai+aj=ak,则称数列Am是“好数列”.
(Ⅰ)当m=6,n=100时,
(ⅰ)若数列A6:11,78,x,y,97,90是一个“好数列”,试写出x,y的值,并判断数列:11,78,90,x,97,y是否是一个“好数列”?
(ⅱ)若数列A6:11,78,a,b,c,d是“好数列”,且a<b<c<d,求a,b,c,d共有多少种不同的取值?
(Ⅱ)若数列Am是“好数列”,且m是偶数,证明:$\frac{{{a_1}+{a_2}+…+{a_m}}}{m}≥\frac{n+1}{2}$.

查看答案和解析>>

同步练习册答案