精英家教网 > 高中数学 > 题目详情
14.如图,在三棱柱ABC-A1B1C1中,侧棱垂直底面,各棱长均为2,D为AB的中点.
(1)求证:BC1∥平面A1CD;
(2)求证:平面A1CD⊥平面ABB1A1
(3)求A1B1与平面A1CD所成角的正切值.

分析 (1)连结AC1,设AC1与A1C相交于点E,连接DE,则DE∥BC1,由此能证明BC1∥平面A1CD.
(2)推导出CD⊥AA1,CD⊥AB,从而CD⊥面ABB1A1,由此能证明平面A1CD⊥平面ABB1A1
(3)作B1E⊥A1D于E,则∠B1A1E为所A1B1与平面A1CD所成角,由此能求出A1B1与平面A1CD所成角的正切值.

解答 证明:(1)连结AC1,设AC1与A1C相交于点E,连接DE,
∵在三棱柱ABC-A1B1C1中,CC1A1A是平行四边形,
∴E为AC1中点,
∵D为AB的中点,∴DE∥BC1
∵BC1?平面A1CD,DE?平面A1CD,
∴BC1∥平面A1CD.…(4分)
(2)∵A1A⊥平面ABC,CD?平面ABC,
∴CD⊥AA1
又∵CD⊥AB,AB∩AA1=A,AB,A1A?面ABB1A1
∴CD⊥面ABB1A1
∵CD?面A1CD,∴平面A1CD⊥平面ABB1A1.…(8分)
解:(3)作B1F⊥A1D于F,
由(2)知B1F⊥面A1DC,
∴∠B1A1F为所A1B1与平面A1CD所成角,
tan∠B1A1F=tan∠ADA1=2,
∴A1B1与平面A1CD所成角的正切值为2.…(13分)

点评 本题考查线面平行、面面垂直的证明,考查线面角的正切值求法,是中档题,解题时要认真审题,注意空间思维能力的培养.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.△ABC中,角A,B,C的对边分别为a,b,c,2bcosC-c=2a.
(Ⅰ)求B的大小;
(Ⅱ)若a=3,且AC边上的中线长为$\frac{{\sqrt{19}}}{2}$,求c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.为了研究某学科成绩是否在学生性别有关,采用分层抽样的方法,从高三年级抽取了30名男生和20名女生的该学科成绩,得到如下所示男生成绩的频率分布直方图和女生成绩的茎叶图,规定80分以上为优分(含80分)

(Ⅰ)求男生和女生的平均成绩
(Ⅱ)请根据图示,将2×2列联表补充完整,并根据此列联表判断,能否在犯错误概率不超过10%的前提下认为“该学科成绩与性别有关”?
优分非优分合计
男生
女生
合计50
(Ⅲ)用分层抽样的方法从男生和女生中抽取5人进行学习问卷调查,并从5人中选取两名学生对该学科进行考后重测,求至少有一名女生的概率
参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
 P(K2≥k2 0.500.40 0.25 0.15 0.10 0.05 0.025 0.01 0.005 0.001 
 k0 0.460.71 1.32 2.07 2.71 3.84 5.024 6.635 7.879 10.828 

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=lnx+ax2
(Ⅰ)记m(x)=f′(x),若m′(1)=3,求实数a的值;
(Ⅱ已知函数g(x)=f(x)-ax2+ax,若g(x)在(0,+∞)上单调递增,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知下列命题:
①命题“?x∈R,x2+1>3x”的否定是“?x∈R,x2+1<3x”;
②已知p,q为两个命题,若“p∨q”为假命题,则“(¬p)∧(¬q)为真命题”;
③“a>2”是“a>5”的充分不必要条件;
④“若xy=0,则x=0且y=0”的逆否命题为真命题.
其中真命题 有(  )个.
A.4B.3C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知集合$P=\{x|y=\sqrt{2-x}\}$,Q={x|y=ln(x+1)},则P∩Q=(  )
A.{x|-1≤x≤2}B.{x|-1≤x<2}C.{x|-1<x≤2}D.{x|-1<x<2}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.点P为棱长是2的正方体ABCD-A1B1C1D1的内切球O球面上的动点,点M为B1C1的中点,若满足DP⊥BM,则动点P的轨迹的长度为(  )
A.$\frac{{\sqrt{5}π}}{5}$B.$\frac{{2\sqrt{5}π}}{5}$C.$\frac{{4\sqrt{5}π}}{5}$D.$\frac{{8\sqrt{5}π}}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,已知在侧棱垂直于底面的三棱柱ABC-A1B1C1中,AC=3,AB=5,BC=4,AA1=4点D是AB的中点.
(1)求证:AC1∥平面B1DC;
(2)求三棱锥A1-B1CD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.以点(2,-3)为圆心且与直线2mx-y-2m-1=0(m∈R)相切的所有圆中,面积最大的圆的标准方程为(x-2)2+(y+3)2=5.

查看答案和解析>>

同步练习册答案