精英家教网 > 高中数学 > 题目详情

【题目】某种产品特约经销商根据以往当地的需求情况,得出如下该种产品日需求量的频率分布直方图.

⑴求图中a的值,并估计日需求量的众数;

⑵某日,经销商购进130件该种产品,根据近期市场行情,当天每售出1件能获利30元,未售出的部分,每件亏损20元。设当天需求量为件(),纯利润为S元.

①将S表示为的函数;②据频率分布直方图估计当天纯利润S不少于3400元的概率。

【答案】(1)a=0.025 ;众数为125;(2)0.7

【解析】

试题分析:(1)利用频率分布直方图中所有的小长方形的面积之和为一求出的值,利用直方图中最高的小长方形底边的中点的横坐标求出众数;

2)()设当天的需求量为件,当时,全部售出,获利元;若,剩余件,可得纯利润为元,由此可将表示为的函数(分段函数);

)由()中所得函数解出纯利润不少于元时的范围,再利用直方图中频率估计相应的概率值.

试题解析:解:(1)由直方图可知:

0.013+0.015+0.017++0.030×10=1

. 2

估计日需求量的众数为125. 4

2)()当时,6

时,8

. 9

)若 ,

. 11

由直方图可知当时的频率是

可估计当天纯利润S不少于3400元的概率是0.7. 14

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知等差数列{an}的前n项和为Sn , 且 ,S20=17,则S30为(
A.15
B.20
C.25
D.30

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下面有五个命题:① 函数的最小正周期是;② 终边在轴上的角的集合是;③ 在同一坐标系中,函数的图象和函数的图象有三个公共点;④ 把函数;;其中真命题的序号是( )

A. ①③ B. ①④ C. ②③ D. ③④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某地一天中6时至14时的温度变化曲线近似满足函数T=Asin(ωt+φ)+B(其中<φ<π)6时至14时期间的温度变化曲线如图所示,它是上述函数的半个周期的图象,那么图中曲线对应的函数解析式是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=sin+cos , x∈R.
(1)求函数f(x)的最小正周期,并求函数f(x)在x∈[﹣2π,2π]上的单调递增区间;
(2)函数f(x)=sinx(x∈R)的图象经过怎样的平移和伸缩变换可以得到函数f(x)的图象.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图是函数的导函数的图象,给出下列命题:

①是函数的极值点;
②是函数的最小值点;
③在处切线的斜率小于零;
④在区间上单调递增。
则正确命题的序号是( )
A.①②
B.①④
C.②③
D.③④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图是函数y=f(x)的导函数y=f′(x)的图象,给出下列命题:
①﹣3是函数y=f(x)的极值点;
②﹣1是函数y=f(x)的最小值点;
③y=f(x)在x=0处切线的斜率小于零;
④y=f(x)在区间(﹣3,1)上单调递增.
则正确命题的序号是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】判断下列命题是全称命题还是特称命题,并判断其真假.

(1)对数函数都是单调函数;

(2)至少有一个整数,它既能被11整除,又能被9整除;

(3)x{x|x0}

(4)x0Zlog2x02.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】O为坐标原点,动点M在椭圆C上,过Mx轴的垂线,垂足为N,点P满足.

1)求点P的轨迹方程;

(2)设点Q在直线上,且。证明:过点P且垂直于OQ的直线lC的左焦点F.

查看答案和解析>>

同步练习册答案