精英家教网 > 高中数学 > 题目详情

(本小题满分12分) 已知四棱锥底面ABCD是矩形,PA⊥平面ABCD, AD=2,AB=1,E.F分别是线段AB.BC的中点,

(1)证明:PF⊥FD;

(2)在PA上找一点G,使得EG∥平面PFD;.

(3)若与平面所成的角为,求二面角的余弦值.

 

【答案】

 

(1)证明略

(2)略

(3)

【解析】解:(1)证明:连接AF,则AF=,DF=,

又AD=2,∴DF2+AF2=AD2,

∴DF⊥AF.又PA⊥平面ABCD,

∴DF⊥PA,又PA∩AF=A,

……………4分

(2)过点E作EH∥FD交AD于点H,则EH∥平面PFD且AH=AD.

再过点H作HG∥DP交PA于点G,则HG∥平面PFD且AG=AP,

∴平面EHG∥平面PFD

∴EG∥平面PFD

从而满足AG=AP的点G为所求.………………8分

    ⑶建立如图所示的空间直角坐标系,因为PA⊥平面ABCD ,所以与平面所成的角.

又有已知得,所以

所以

设平面的法向量为,由

,令,解得:

所以

又因为

所以是平面的法向量,

易得

所以

由图知,所求二面角的余弦值为.……………………12分

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(文) (本小题满分12分已知函数y=4-2
3
sinx•cosx-2sin2x(x∈R)

(1)求函数的值域和最小正周期;
(2)求函数的递减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•自贡三模)(本小题满分12分>
设平面直角坐标中,O为原点,N为动点,|
ON
|=6,
ON
=
5
OM
.过点M作MM1丄y轴于M1,过N作NN1⊥x轴于点N1
OT
=
M1M
+
N1N
,记点T的轨迹为曲线C.
(I)求曲线C的方程:
(H)已知直线L与双曲线C:5x2-y2=36的右支相交于P、Q两点(其中点P在第-象限).线段OP交轨迹C于A,若
OP
=3
OA
,S△PAQ=-26tan∠PAQ求直线L的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本小题满分12分)已知函数,且。①求的最大值及最小值;②求的在定义域上的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009湖南卷文)(本小题满分12分)

为拉动经济增长,某市决定新建一批重点工程,分别为基础设施工程、民生工程和产业建设工程三类,这三类工程所含项目的个数分别占总数的.现有3名工人独立地从中任选一个项目参与建设.求:

(I)他们选择的项目所属类别互不相同的概率;    w.w.w.k.s.5.u.c.o.m    

(II)至少有1人选择的项目属于民生工程的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本小题满分12分)

某民营企业生产A,B两种产品,根据市场调查和预测,A产品的利润与投资成正比,其关系如图1,B产品的利润与投资的算术平方根成正比,其关系如图2,

(注:利润与投资单位是万元)

(1)分别将A,B两种产品的利润表示为投资的函数,并写出它们的函数关系式.(2)该企业已筹集到10万元资金,并全部投入到A,B两种产品的生产,问:怎样分配这10万元投资,才能使企业获得最大利润,其最大利润为多少万元.

查看答案和解析>>

同步练习册答案