分析 利用H为△ABC的垂心,所以AB⊥HC,BC⊥HA,AC⊥HB,然后利用向量表示垂直,用HA,HB,HC对应的向量表示,得到所求.
解答 解:因为H为△ABC的垂心,所以AB⊥HC,BC⊥HA,AC⊥HB,
所以$\overrightarrow{AB}•\overrightarrow{HC}=(\overrightarrow{HB}-\overrightarrow{HA})\overrightarrow{HC}=0$,所以$\overrightarrow{HB}•\overrightarrow{HC}=\overrightarrow{HA}•\overrightarrow{HC}$;
同理$\overrightarrow{HC}•\overrightarrow{HA}=\overrightarrow{HB}•\overrightarrow{HA}$,由$\overrightarrow{HA}$$•\overrightarrow{HB}$=-3,
所以 $\overrightarrow{BH}$$•\overrightarrow{HC}$=3;
故答案为:3.
点评 本题考查了三角形的垂心的性质以及平面向量垂直的性质;关键是由垂心得到$\overrightarrow{AB}•\overrightarrow{HC}=(\overrightarrow{HB}-\overrightarrow{HA})\overrightarrow{HC}=0$.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | f(sinα)>f(sinβ) | B. | f(cosα)>f(cosβ) | C. | f(tanα)>f(tanβ) | D. | 以上都不对 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com