精英家教网 > 高中数学 > 题目详情

【题目】随着智能手机的普及,使用手机上网成为了人们日常生活的一部分,很多消费者对手机流量的需求越来越大.某通信公司为了更好地满足消费者对流量的需求,准备推出一款流量包.该通信公司选了人口规模相当的个城市采用不同的定价方案作为试点,经过一个月的统计,发现该流量包的定价: (单位:元/月)和购买总人数(单位:万人)的关系如表:

定价x(元/月)

20

30

50

60

年轻人(40岁以下)

10

15

7

8

中老年人(40岁以及40岁以上)

20

15

3

2

购买总人数y(万人)

30

30

10

10

(Ⅰ)根据表中的数据,请用线性回归模型拟合的关系,求出关于的回归方程;并估计元/月的流量包将有多少人购买?

(Ⅱ)若把元/月以下(不包括元)的流量包称为低价流量包,元以上(包括元)的流量包称为高价流量包,试运用独立性检验知识,填写下面列联,并通过计算说明是否能在犯错误的概率不超过的前提下,认为购买人的年龄大小与流量包价格高低有关?

定价x(元/月)

小于50元

大于或等于50元

总计

年轻人(40岁以下)

中老年人(40岁以及40岁以上)

总计

参考公式:其中

其中

参考数据:

0.10

0.05

0.025

0.010

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

【答案】(Ⅰ)38万人(Ⅱ)见解析

【解析】

(Ⅰ)利用所给公式与参考数值即可求解回归方程,令 代入即可求出此时y的估计值;

(Ⅱ)根据流量包的定价和购买总人数的关系表中的数值填写列联表,代入

,比较它与6.635的大小即可。

(Ⅰ)

所以:关于的回归方程是:

估计10元/月的流量包将有38万人购买;

(Ⅱ)

定价x(元/月)

小于50元

大于或等于50元

总计

年轻人(40岁以下)

25

15

40

中老年人(40岁以及40岁以上)

35

5

40

总 计

60

20

80

所以能在犯错误的概率不超过0.01的前提下,认为购买人的年龄大小与流量包价格高低有关。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知实数xy满足条件,则点的运动轨迹是( )

A.椭圆B.双曲线C.抛物线D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学校为鼓励家校互动,与某手机通讯商合作,为教师办理流量套餐.为了解该校教师手机流量使用情况,通过抽样,得到位教师近年每人手机月平均使用流量(单位:)的数据,其频率分布直方图如下:

若将每位教师的手机月平均使用流量分别视为其手机月使用流量,并将频率为概率,回答以下问题.

(Ⅰ) 从该校教师中随机抽取人,求这人中至多有人月使用流量不超过 的概率;

(Ⅱ) 现该通讯商推出三款流量套餐,详情如下:

套餐名称

月套餐费(单位:元)

月套餐流量(单位:)

这三款套餐都有如下附加条款:套餐费月初一次性收取,手机使用一旦超出套餐流量,系统就自动帮用户充值 流量,资费元;如果又超出充值流量,系统就再次自动帮用户充值 流量,资费元/次,依次类推,如果当月流量有剩余,系统将自动清零,无法转入次月使用.

学校欲订购其中一款流量套餐,为教师支付月套餐费,并承担系统自动充值的流量资费的,其余部分由教师个人承担,问学校订购哪一款套餐最经济?说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某地区2007年至2013年农村居民家庭纯收入y(单位:千元)的数据如下表:

年份

2007

2008

2009

2010

2011

2012

2013

年份代号t

1

2

3

4

5

6

7

人均纯收入y

2.9

3.3

3.6

4.4

4.8

5.2

5.9

(1)求y关于t的线性回归方程;

(2)利用(1)中的回归方程,分析2007年至2013年该地区农村居民家庭人均纯收入的变化情况,并预测该地区2015年农村居民家庭人均纯收入.

附:回归直线的斜率和截距的最小二乘法估计公式分别为:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的图象过点,且在点处的切线与直线平行.

1)求实数的值;

2)若对任意的,函数在区间上总不是单调函数,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线的焦点分别为,点为坐标原点).

(1)求抛物线的方程;

(2)过点的直线交的下半部分于点,交的左半部分于点,求面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示的数表为森德拉姆筛(森德拉姆,东印度学者),其特点是每行每列都成等差数列.在此表中,数字“121”出现的次数为___________.

2

3

4

5

6

7

……

3

5

7

9

11

13

……

4

7

10

13

16

19

……

5

9

13

17

21

25

……

6

11

16

21

26

31

……

7

13

19

25

31

37

……

……

……

……

……

……

……

……

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列四个命题中真命题是  

A. 同垂直于一直线的两条直线互相平行

B. 底面各边相等,侧面都是矩形的四棱柱是正四棱柱

C. 过空间任一点与两条异面直线都垂直的直线有且只有一条

D. 过球面上任意两点的大圆有且只有一个

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数.

1)讨论函数的单调性;

2)当时,

①求函数上的最大值和最小值;

②若存在,…,,使得成立,求的最大值.

查看答案和解析>>

同步练习册答案