精英家教网 > 高中数学 > 题目详情
已知斜三棱柱ABC-A′B′C′,设
AB
=
a
AC
=
b
AA′
=
c
,在面对角线AC′和棱BC上分别取点M、N,使
AM
=k
AC′
BN
=k
BC
(0≤k≤1),求证:三向量
MN
a
c
共面.
分析:利用向量的线性运算即可得出.
解答:解:如图所示:
AN
=
AB
+
BN
=
AB
+k
BC

=
AB
+k(
AC
-
AB

=
a
+k(
b
-
a
)

=(1-k)
a
+k
b

AM
=k
AC′
=k(
AA′
+
AC
)=k
b
+k
c

MN
=
AN
-
AM
=(1-k)
a
-k
c

又∵向量
a
c
不共线,∴
MN
a
c
共面.
点评:熟练掌握向量的线性运算是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知斜三棱柱ABC-A1B1C1的侧面BB1C1C是边长为2的菱形,∠B1BC=60°,侧面BB1C1C⊥底面ABC,∠ABC=90°,二面角A-B1B-C为30°.
(1)求证:AC⊥平面BB1C1C;
(2)求AB1与平面BB1C1C所成角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网已知斜三棱柱ABC-A1B1C1的侧面BB1C1C与底面ABC垂直,BB1=BC,∠B1BC=60°,AB=AC,M是B1C1的中点.
(Ⅰ)求证:AB1∥平面A1CM;
(Ⅱ)若AB1与平面BB1C1C所成的角为45°,求二面角B-AC-B1的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知斜三棱柱ABC-A1B1C1的底面边长AB=2,BC=3,BC⊥面ABC1,CC1与面ABC所成的角为60°则斜三棱柱ABC-A1B1C1体积的最小值是
9
3
9
3

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,已知斜三棱柱ABC-A1B1C1的各棱长均为2,侧棱与底面所成角为
π3
,且侧面ABB1A1垂直于底面.
(1)判断B1C与C1A是否垂直,并证明你的结论;
(2)求四棱锥B-ACC1A1的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网已知斜三棱柱ABC-A1B1C1中,∠ACB=90°,AC=BC=2,点D为AC的中点,A1D⊥平面ABC,A1B⊥ACl
(I)求证:AC1⊥AlC; 
(Ⅱ)求二面角A-A1B-C的余弦值.

查看答案和解析>>

同步练习册答案