精英家教网 > 高中数学 > 题目详情
对任意函数f(x),x∈D,可按如图构造一个数列发生器,记由数列发生器产生数列{xn}.
(1)若定义函数f(x)=
4x-2
x+1
,且输入x0=
49
65
,请写出数列{xn}的所有项;
(2)若定义函数f(x)=xsinx(0≤x≤2π),且要产生一个无穷的常数列{xn},试求输入的初始数据x0的值及相应数列{xn}的通项公式xn
(3)若定义函数f(x)=2x+3,且输入x0=-1,求数列{xn}的通项公式xn
分析:(1)函数f(x)=
4x-2
x+1
的定义域D=(-∞,-1)∪(-1,+∞),由此能推导出数列{xn}只有三项x1=
11
19
x2=
1
5
x3=-1

(2)若要产生一个无穷的常数列,则f(x)=xsinx=x在[0,2π]上有解,由此能求出输入的初始数据x0的值及相应数列{xn}的通项公式xn
(3)f(x)=2x+3的定义域为R,若x0=-1,则x1=1,则xn+1+3=2(xn+3),从而得到数列{xn+3}是首项为4,公比为2的等比数列,由此能求出数列{xn}的通项公式.
解答:解:(1)函数f(x)=
4x-2
x+1
的定义域D=(-∞,-1)∪(-1,+∞)…(1分)
x0=
49
65
代入可得x1=
11
19
,把x1=
11
19
代入可得x2=
1
5
,把x2=
1
5
代入可得x3=-1
因为x3=-1∉D,
所以数列{xn}只有三项:x1=
11
19
x2=
1
5
x3=-1
…(4分)
(2)若要产生一个无穷的常数列,则f(x)=xsinx=x在[0,2π]上有解,
即x(sinx-1)=0在[0,2π]上有解,则x=0或sinx=1,所以x=0或x=
π
2
…(6分)
即当x0=0或x0=
π
2
时,xn+1=xnsinxn=xn

故当x0=0时,xn=0;当x0=
π
2
时,xn=
π
2
.  …(9分)
(3)f(x)=2x+3的定义域为R,…(10分)
若x0=-1,则x1=1,
则xn+1=f(xn)=2xn+3,所以xn+1+3=2(xn+3),…(12分)
所以数列{xn+3}是首项为4,公比为2的等比数列,
所以xn+3=4•2n-1=2n+1,所以xn=2n+1-3
即数列{xn}的通项公式xn=2n+1-3.                    …(14分)
点评:本题考查数列的所有项的求法,考查数列的通项公式的求法,解题时要认真审题,仔细解答,注意等价转化思想的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

对任意函数f(x),x∈D,可按图构造一个数列发生器.记由数列发生器产生数列{xn}.
(Ⅰ)若定义函数f(x)=
4x-2
x+1
,且输入x0=
49
65
,请写出数列{xn}的所有项;
(Ⅱ)若定义函数f(x)=2x+3,且输入x0=-1,求数列{xn}的通项公式xn
(Ⅲ)若定义函数f(x)=xsinx(0≤x≤2π),且要产生一个无穷的常数列{xn},试求输入的初始数据x0的值及相应数列{xn}的通项公式xn

查看答案和解析>>

科目:高中数学 来源: 题型:

对任意函数f(x),x∈D,可按图示构造一个数列发生
器,工作原理如下:
(1)输入x0∈D,则可输出x1=f(x0)(2)若x0∉D,则结束,否则计算x2=f(x1).
现定义 f(x)=
4x-2
x+1

①若输入x0=
49
65
,写出{xn};
②若要数列发生器产生一个无穷的常数列,试求输入的x0

查看答案和解析>>

科目:高中数学 来源: 题型:

(2001•上海)对任意函数f(x),x∈D,可按图示构造一个数列发生器,其工作原理如下:
①输入数据x0∈D,经按列发生器,其工作原理如图:
②若x1∈D,则数列发生器结束工作;若x1∈D,则将x1反馈回输入端,再输出x2=f(x1),并依此规律继续下去,现定义f(x)=
4x-2
x+1

(Ⅰ)若输入x0=
49
65
,则由数列发生器产生数列{xn}.请写出数列{xn}的所有项:
(Ⅱ)若要数列发生器产生一个无穷的常数数列,试求输入的初始数据x0的值;
(Ⅲ)若输入x0时,产生的无穷数列{xn}满足;对任意正整数n,均有xn>xn+1,求x0的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

命题“对任意函数f(x),[f(x)]2+[f′(x)]2≠1”的否定是(  )

查看答案和解析>>

同步练习册答案