精英家教网 > 高中数学 > 题目详情
12.设函数f(x)=-x2-2x,g(x)=$\left\{\begin{array}{l}{x+\frac{1}{4x},x>0}\\{x+1,x≤0}\end{array}\right.$,h(x)=g[f(x)],求函数h(x)的单调递增区间.

分析 根据已知中函数f(x),g(x)的解析式,结合h(x)=g[f(x)]先求出函数h(x)的解析式,进而根据复合函数单调性:“同增异减”的原则,得到答案.

解答 解:令-x2-2x=0得,x=0,或x=-2;
∴当x≤-2,或x≥0时,f(x)≤0,
当-2<x<0时,f(x)>0;
∴$h(x)=\left\{\begin{array}{l}f(x)+\frac{1}{4f(x)},&-2<x<0\\-{x}^{2}-2x+1&,x≤-2,或x≥0\end{array}\right.$;
(1)当x≤-2时,函数h(x)为减函数;
(2)当-2<x<0时,令f(x)=t,0<t<1,
设y=h(x),则:$y=t+\frac{1}{4t}$,0<t<1,$y′=\frac{4{t}^{2}-1}{4{t}^{2}}$;
∴$t∈(0,\frac{1}{2})$时,y′<0,$y=t+\frac{1}{4t}$为减函数,t∈($\frac{1}{2},1$)时,y′>0,$y=t+\frac{1}{4t}$为增函数;
令f(x)=-x2-2x=$\frac{1}{2}$,则x=-1±$\frac{\sqrt{2}}{2}$,
∵当-2<x<-1-$\frac{\sqrt{2}}{2}$时,f(x)为增函数,g(x)为减函数,故h(x)为减函数;
当-1-$\frac{\sqrt{2}}{2}$<x<-1时,f(x)为增函数,g(x)为增函数,故h(x)为增函数;
当-1<x<-1+$\frac{\sqrt{2}}{2}$时,f(x)为减函数,g(x)为增函数,故h(x)为减函数;
当-1+$\frac{\sqrt{2}}{2}$<x<0时,f(x)为减函数,g(x)为减函数,故h(x)为增函数;
(3)当x≥0时,h(x)为增函数;
综上所述,函数h(x)的单调递增区间为[-1-$\frac{\sqrt{2}}{2}$,-1],[-1+$\frac{\sqrt{2}}{2}$,+∞).

点评 本题考查的知识点是分段函数的应用,复合函数的单调性,难度中档.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.已知sinθ=$\frac{m-3}{m+5}$,cosθ=$\frac{4-2m}{m+5}$($\frac{π}{2}$<θ<π),则tanθ=(  )
A.$-\frac{5}{12}$B.$\frac{5}{12}$C.$-\frac{3}{4}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.三棱锥P-ABC的四个顶点在同一球面上,若PA⊥底面ABC,底面ABC是直角三角形,PA=2,AC=BC=1,则点A到面PBC的距离为$\frac{{2\sqrt{5}}}{5}$;此球的表面积为6π.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.总体由编号为01,02,…,29,30的30个个体组成.利用下面的随机数表选取4个个体,选取方法是如下从随机数表第2行的第2列数字0开始由左到右依次选取两个数字,则选出来的第3个个体的编号为20.
78 16 65 72 08  02 63 14 07 02  43 69 69 38 74
32 04 94 23 49  55 80 20 36 35  48 69 97 28 01

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.(理科)已知f(x)=$\frac{a}{{a}^{2}-1}$(ax-a-x) (a>0且a≠1).
(1)判断f(x)的奇偶性.
(2)讨论f(x)单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.由曲线y=x2和直线x=0,x=2,y=t2,t∈[0,2]围成的封闭图形的面积记为S.
(1)用t表示S.
(2)求S的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.下列四组函数:(1)f(x)=x,$g(x)={(\sqrt{x})^2}$(2)f(x)=x,$g(x)={(\root{3}{x})^3}$(3)f(x)=1,g(x)=x0(4)f(x)=x2-2x-1,g(t)=t2-2t-1其中表示同一函数的是(  )
A.(1)B.(2)(3)C.(2)(4)D.(2)(3)(4)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知a,b,c∈R+,求证:
(1)(ab+a+b+1)(ab+ac+bc+c2)≥16abc
(2)$\frac{b+c-a}{a}$+$\frac{c+a-b}{b}$+$\frac{a+b-c}{c}$≥3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知映射f:A→B,其中A=B=R,对应法则f:x→y=$\left\{{\begin{array}{l}{{x^2}-2x,x≥0}\\{-{x^2}-2x,x<0}\end{array}}$,实数k∈B,且k在集合A中只有一个原象,则k的取值范围是(  )
A.(-∞,-1]∪[1,+∞)B.(-∞,-1)∪(1,+∞)C.(-1,1)D.[-1,1]

查看答案和解析>>

同步练习册答案