【题目】在正三棱柱ABC﹣A1B1C1中,点D是BC的中点.
(1)求证:A1C∥平面AB1D;
(2)设M为棱CC1的点,且满足BM⊥B1D,求证:平面AB1D⊥平面ABM.
【答案】
(1)证明:记A1B∩AB1=O,连接OD.
∵四边形AA1B1B为矩形,∴O是A1B的中点,
又∵D是BC的中点,∴A1C∥OD.
又∵A1C平面AB1D,OD平面AB1D,
∴A1C∥平面AB1D.
(2)证明:∵△ABC是正三角形,D是BC的中点,
∴AD⊥BC.
∵平面ABC⊥平面BB1C1C,
平面ABC∩平面BB1C1C=BC,AD平面ABC,
∴AD⊥平面BB1C1C.
或利用CC1⊥平面ABC证明AD⊥平面BB1C1C.
∵BM平面BB1C1C,∴AD⊥BM.
又∵BM⊥B1D,AD∩B1D=D,AD,B1D平面AB1D,
∴BM⊥平面AB1D.
又∵BM平面ABM,
∴平面AB1D⊥平面ABM.
【解析】(1)先设A1B∩AB1=O,连接OD,再利用三角形的中位线可证A1C∥OD,进而利用线面平行的判定定理可证A1C∥平面AB1D;(2)先利用面面垂直的性质定理可证AD⊥平面BB1C1C,进而可证AD⊥BM,再利用线面垂直的判定定理可证BM⊥平面AB1D,进而利用面面垂直的判定定理可证平面AB1D⊥平面ABM.
科目:高中数学 来源: 题型:
【题目】已知△ABC的外接圆半径为1,角A,B,C的对边分别为a,b,c,且2acos A=ccos B+bcos C.
(Ⅰ)求A;
(Ⅱ)若b2+c2=7,求△ABC的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】从装有n+1个球(其中n个白球,1个黑球)的口袋中取出m个球(0<m≤n,m,n∈N),共有 种取法.在这 种取法中,可以分成两类:一类是取出的m个球全部为白球,共有 种取法;另一类是取出的m个球有m﹣1个白球和1个黑球,共有 种取法.显然 ,即有等式: 成立.试根据上述思想化简下列式子: = .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,椭圆E: (a>b>0)过点( ,1),且与直线 x+2y﹣4=0相切.
(1)求椭圆E的方程;
(2)若椭圆E与x轴交于M、N两点,椭圆E内部的动点P使|PM|、|PO|、|PN|成等比数列,求 的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an},a1=2,a2=6,且满足=2(n≥2且n∈N+)
(1)证明:新数列{an+1-an}是等差数列,并求出an的通项公式
(2)令bn=,设数列{bn}的前n项和为Sn,证明:S2n-Sn<5
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an}的前n项和为Sn , 且对任意正整数n,都有3an=2Sn+3成立.
(1)求数列{an}的通项公式;
(2)设bn=log3an , 求数列{ }的前n项和Tn .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列说法中不正确的是________.(填序号)
①若a∈R,则“<1”是“a>1”的必要不充分条件;
②“p∧q为真命题”是“p∨q为真命题”的必要不充分条件;
③若命题p:“x∈R,sin x+cos x≤”,则p是真命题;
④命题“x0∈R,+2x0+3<0”的否定是“x∈R,x2+2x+3>0”.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】函数的最小值为.
(1)求;
(2)若,求及此时的最大值.
【答案】(1) ;(2)答案见解析.
【解析】试题分析:(1)利用同角三角函数间的基本关系化简函数解析式后,分三种情况:①小于﹣1时②大于﹣1而小于1时③大于1时,根据二次函数求最小值的方法求出f(x)的最小值g(a)的值即可;(2)把代入到第一问的g(a)的第二和第三个解析式中,求出a的值,代入f(x)中得到f(x)的解析式,利用配方可得f(x)的最大值.
试题解析:
(1)由
.这里
①若则当时,
②若当时,
③若则当时,
因此
(2)
①若,则有得,矛盾;
②若,则有即或(舍).
时, 此时
当时, 取得最大值为5.
点睛:二次函数在闭区间上必有最大值和最小值,它只能在区间的端点或二次函数图象的顶点处取到;常见题型有:(1)轴固定区间也固定;(2)轴动(轴含参数),区间固定;(3)轴固定,区间动(区间含参数). 找最值的关键是:(1)图象的开口方向;(2)对称轴与区间的位置关系;(3)结合图象及单调性确定函数最值.
【题型】填空题
【结束】
21
【题目】已知两个不共线的向量的夹角为,且为正实数.
(1)若与垂直,求;
(2)若,求的最小值及对应的的值,并指出此时向量与的位置关系.
(3)若为锐角,对于正实数,关于的方程有两个不同的正实数解,且,求的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com