精英家教网 > 高中数学 > 题目详情
2.设f(x)=$\left\{\begin{array}{l}{\frac{2}{3}{x}^{3},x≤1}\\{{x}^{2},x>1}\end{array}\right.$,则f(x)在x=1处的(  )
A.左、右导数都存在B.左导数存在,右导数不存在
C.左导数不存在,右导数存在D.左、右导数都不存在

分析 由题意求得$\underset{lim}{x→{1}^{-}}$$\frac{f(x)-f(1)}{x-1}$存在,$\underset{lim}{x→{1}^{+}}$$\frac{f(x)-f(1)}{x-1}$不存在,从而解得.

解答 解:$\underset{lim}{x→{1}^{-}}$$\frac{f(x)-f(1)}{x-1}$=$\underset{lim}{x→{1}^{-}}$$\frac{\frac{2}{3}{x}^{3}-\frac{2}{3}}{x-1}$
=$\frac{2}{3}$$\underset{lim}{x→{1}^{-}}$(x2+x+1)=2,
$\underset{lim}{x→{1}^{+}}$$\frac{f(x)-f(1)}{x-1}$=$\underset{lim}{x→{1}^{+}}$$\frac{{x}^{2}-\frac{2}{3}}{x-1}$不存在,
故左导数不存在,右导数存在;
故选:C.

点评 本题考查了导数的概念及极限的求法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.已知$cos(\frac{π}{2}-α)=\frac{3}{5},α∈({\frac{π}{2},π})$,则$sin({α+\frac{π}{3}})$=$\frac{{3-4\sqrt{3}}}{10}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左焦点为F(-1,0),点F到右顶点的距离为$\sqrt{2}$+1.
(1)求该椭圆方程;
(2)已知经过点F且垂直于x轴的直线交椭圆于A,B两点,点M(-$\frac{5}{4}$,0),求$\overrightarrow{MA}$•$\overrightarrow{MB}$的值;
(3)若经过点F的动直线l与椭圆交于不同的两点A,B,点M(-$\frac{5}{4}$,0),问$\overrightarrow{MA}$•$\overrightarrow{MB}$是否为定值?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=x|x-a|,其中a∈R
(1)判断函数f(x)的奇偶性;
(2)解关于x的不等式:f(x)≥2a2
(3)若函数f(x)=1有三个不等实根,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.从点A(4,1)出发一束光线经过直线l1:x-3y+3=0反射,反射光线恰好通过点B(1,6).
(1)求点B关于直线l1的对称点B′的坐标;
(2)求入射光线l所在的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知函数$f(x)=\left\{\begin{array}{l}{2^x}-a,(x<1)\\{log_2}(x+a)(x≥1).\end{array}\right.$(a>-1).
①当a=0时,若f(x)=0,则x=1.
②若f(x)是(-∞,+∞)上的增函数,则a的取值范围是a≥1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.函数y=2sin(2x+$\frac{π}{3}$)的图象向左平移m(m>0)个单位长度后,所得到的图象关于y轴对称,则m的最小值是(  )
A.$\frac{π}{12}$B.$\frac{π}{6}$C.$\frac{π}{3}$D.$\frac{5π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知椭圆C1与双曲线C2具有相同的焦点F1,F2,A为C1与C2的一个公共点,△AF1F2为等腰三角形,设椭圆C1与双曲线C2的离心率分别为e1,e2,则(  )
A.e1e2=1B.e1e2=2C.e1+e2=2D.$\frac{1}{{e}_{1}}$+$\frac{1}{{e}_{2}}$=2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.cos40°cos160°+sin40°sin20°=(  )
A.-$\frac{\sqrt{3}}{2}$B.-$\frac{1}{2}$C.$\frac{1}{2}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

同步练习册答案