精英家教网 > 高中数学 > 题目详情
如图,在锥体PABCD中,ABCD是边长为1的菱形,且∠DAB=60°,PA=PD=,PB=2,E、F分别是BC、PC的中点.证明:AD⊥平面DEF.
见解析
取AD中点G,连结PG、BG、BD.

因为PA=PD,有PG⊥AD,在△ABD中,AB=AD,∠DAB=60°,故△ABD为等边三角形,因此BG⊥AD,BG∩PG=G,所以AD⊥平面PBG,AD⊥PB,AD⊥GB.又PB∥EF,得AD⊥EF,而DE∥GB,得AD⊥DE.又FE∩DE=E,EF平面DEF,DE平面DEF,所以AD⊥平面DEF.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥中,底面是矩形,是棱的中点.

(1)求证:平面
(2)求证:平面
(3)在棱上是否存在一点,使得平面平面?若存在,求出的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,正方形ABCD和四边形ACEF所在的平面互相垂直,EF∥AC,AB=,CE=EF=1.

(1)求证:AF∥平面BDE;
(2)求证:CF⊥平面BDE.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图①,E、F分别是直角三角形ABC边AB和AC的中点,∠B=90°,沿EF将三角形ABC折成如图②所示的锐二面角A1EFB,若M为线段A1C的中点.求证:

(1)直线FM∥平面A1EB;
(2)平面A1FC⊥平面A1BC.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在正方体ABCD-A1B1C1D1中,E、F分别是CD、A1D1中点.
 
(1)求证:AB1⊥BF;
(2)求证:AE⊥BF;
(3)棱CC1上是否存在点F,使BF⊥平面AEP,若存在,确定点P的位置;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设a、b为不重合的两条直线,α、β为不重合的两个平面,给出下列命题:
①若a∥α且b∥α,则a∥b;②若a⊥α且b⊥α,则a∥b;③若a∥α且a∥β,则α∥β;④若a⊥α且a⊥β,则α∥β.其中为真命题的是________.(填序号)

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,AB是圆O的直径,PA垂直于圆O所在的平面,C是圆O上不同于A、B的任一点,则图中直角三角形的个数为________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知P是正方体ABCDA1B1C1D1棱DD1上任意一点,则在正方体的12条棱中,与平面ABP平行的直线是____________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设l是直线,α,β是两个不同的平面(  )
A.若l∥α,l∥β,则α∥βB.若l∥α,l⊥β,则α⊥β
C.若α⊥β,l⊥α,则l⊥βD.若α⊥β,l∥α,则l⊥β

查看答案和解析>>

同步练习册答案