精英家教网 > 高中数学 > 题目详情

【题目】在如图所示的正方体ABCDA1B1C1D1中,EFE1F1分别是棱ABADB1C1C1D1的中点,

求证:(1)

(2)∠EA1F=∠E1CF1.

【答案】(1)见解析;(2)见解析

【解析】试题分析:(1)连接 ,由三角形中位线定理可得 ,根据正方体的性质可得,故而可得结论;(2)取的中点,连接,首先证明四边形是平行四边形,得到,再证四边形是平行四边形及平行的传递性,得到,同理得,结合角两边的方向相反,进而可得结论成立.

试题解析:(1)连接 ,在中,因为 分别为 的中点,

所以,同理,在正方体中,因为 ,所以,所以四边形是平行四边形,所以,所以.

(2)取的中点,连接,因为 ,所以

所以四边形是平行四边形,所以,因为,所以四边形是平行四边形,所以,所以,同理可证: ,又两边的方向均相反,所以.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数

1)当时,求不等式的解集;

2)当时,若对任意互不相等的实数,都有成立,求实数的取值范围;

3)判断函数上的零点的个数,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(Ⅰ)若函数在区间上单调递增,求的取值范围;

(Ⅱ)若函数的图象与直线相切,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】经市场调研,某超市一种玩具在过去一个月(按30天)的销售量(件)与价格(元)均为时间(天)的函数,且销售量近似满足,价格近似满足

1)试写出该种玩具的日销售额与时间 )的函数关系式;

2)求该种玩具的日销售额的最大值。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了解某校高三学生的视力情况,随机地抽查了该校1000名高三学生的视力情况,得到频率分布直方图,如图,由于不慎将部分数据丢失,但知道前4组的频数成等比数列,后6组的频数成等差数列,设最大频率为,视力在4.6到5.0之间的学生数 的值分别为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,P是正方体ABCD-A1B1C1D1中BC1上的动点,下列说法:

①AP⊥B1C;②BP与CD1所成的角是60°;③三棱锥的体积为定值;④B1P∥平面D1AC;⑤二面角P-AB-C的平面角为45°.

其中正确说法的个数有 ( )

A. 2个 B. 3个 C. 4个 D. 5个

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了响应我市“创建宜居港城,建设美丽莆田”,某环保部门开展以“关爱木兰溪,保护母亲河”为主题的环保宣传活动,将木兰溪流经市区河段分成段,并组织青年干部职工对每一段的南、北两岸进行环保综合测评,得到分值数据如下表:

南岸

77

92

84

86

74

76

81

71

85

87

北岸

72

87

78

83

83

85

75

89

90

95

(Ⅰ)记评分在以上(包括)为优良,从中任取一段,求在同一段中两岸环保评分均为优良的概率;

(Ⅱ)根据表中数据完成下面茎叶图;

)分别估计两岸分值的中位数,并计算它们的平均值,试从计算结果分析两岸环保情况,哪边保护更好.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在如图所示的多面体中, 平面

1)在上求作点,使平面,请写出作法并说明理由;

2)求三棱锥的高.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某厂商调查甲、乙两种不同型号电视机在10个卖场的销售量(单位:台),并根据这10个卖场的销售情况,得到如图所示的茎叶图.

为了鼓励卖场,在同型号电视机的销售中,该厂商将销售量高于数据平均数的卖场命名为该型号电视机的“星级卖场”.

(1)当时,记甲型号电视机的“星级卖场”数量为,乙型号电视机的“星级卖场”数量为,比较的大小关系;

(2)在这10个卖场中,随机选取2个卖场,记为其中甲型号电视机的“星级卖场”的个数,求的分布列和数学期望;

(3)若,记乙型号电视机销售量的方差为,根据茎叶图推断为何值时,达到最小值.(只需写出结论)

查看答案和解析>>

同步练习册答案