精英家教网 > 高中数学 > 题目详情
3.曲线y=x3-2x+m在x=1处的切线斜率等于1.

分析 根据导数的几何意义可知k=y′|x=1,即可得出结论.

解答 解:y′=3x2-2,切线的斜率k=3×12-2=1,
故答案为1.

点评 本题考查了导数的几何意义,考查学生的计算能力,本题属于容易题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.函数y=$\frac{\sqrt{x+1}}{x}$的定义域是(  )
A.[-1,+∞)B.[-1,0)C.(-1,+∞)D.{x|x≥-1,且x≠0}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,在平面直角坐标系xOy中,已知A,B,C是椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)上不同的三点,$A(\sqrt{10},\frac{{\sqrt{10}}}{2})$,B(-2,-2),C在第三象限,线段BC的中点在直线OA上.
(1)求椭圆的标准方程;
(2)求点C的坐标;
(3)设动点P在椭圆上(异于点A,B,C)且直线PB,PC分别交直线OA于M,N两点,证明$\overrightarrow{OM}•\overrightarrow{ON}$为定值并求出该定值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知命题p:若x<-3,则x2-2x-8>0,则下列叙述正确的是(  )
A.命题p的逆命题是:若x2-2x-8≤0,则x<-3
B.命题p的否命题是:若x≥-3,则x2-2x-8>0
C.命题p的否命题是:若x<-3,则x2-2x-8≤0
D.命题p的逆否命题是真命题

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.设$a=(\frac{7}{9})^{5}$,$b=(\frac{9}{7})^{\frac{1}{5}}$,$c=lo{g}_{2}\frac{7}{9}$,则a,b,c的大小关系是(  )
A.b<a<cB.c<a<bC.c<b<aD.b<c<a

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.在直三棱柱ABC-A1B1C1中,AC=4,CB=2,AA1=2,∠ACB=60°,E、F分别是A1C1,BC的中点.
(1)证明:AB⊥平面BB1C1C;
(2)设P是BE的中点,求三棱锥P-B1C1F的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.在[-4,3]上随机取一个数m,能使函数$f(x)={x}^{2}+\sqrt{2}mx+2$在R上有零点的概率为$\frac{3}{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.定义在R上的函数f(x),已知函数y=f(x+1)的图象关于直线x=-1对称,对任意的x1,x2∈(-∞,0)(x1≠x2),都有$\frac{{f({x_1})-f({x_2})}}{{{x_1}-{x_2}}}<0$,则下列结论正确的是(  )
A.f(0.32)<f(20.3)<f(log25)B.$f({log_2}5)<f({2^{0.3}})<f({0.3^2})$
C.$f({log_2}5)<f({0.3^2})<f({2^{0.3}})$D.$f({0.3^2})<f({log_2}5)<f({2^{0.3}})$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知f(x)=ax3+bx+9(a,b∈R),且f(-2016)=7,则f(2016)=11.

查看答案和解析>>

同步练习册答案