【题目】某理财公司有两种理财产品和,这两种理财产品一年后盈亏的情况如下(每种理财产品的不同投资结果之间相互独立):
产品
投资结果 | 获利20% | 获利10% | 不赔不赚 | 亏损10% |
概率 | 0.2 | 0.3 | 0.2 | 0.3 |
产品(其中)
投资结果 | 获利30% | 不赔不赚 | 亏损20% |
概率 | 0.1 |
(1)已知甲、乙两人分别选择了产品和产品进行投资,如果一年后他们中至少有一人获利的概率大于0.7,求的取值范围;
(2)丙要将家中闲置的10万元钱进行投资,以一年后投资收益的期望值为决策依据,在产品和产品之中选其一,应选用哪种产品?
【答案】(1)见解析;(2)见解析
【解析】
(1)利用相互独立事件和对立事件的概率计算公式,求出一年后甲、乙两人中至少有一人投资获利的概率值,解不等式可求出p的取值范围;(2)设丙选择产品A进行投资,记X为获利金额,写出X的分布列,计算数学期望;设丙选择产品B进行投资,记Y为获利金额,写出Y的分布列,计算数学期望;讨论p的取值,得出E(X)与E(Y)的大小关系即可.
(1)记事件为“甲选择产品且盈利”,事件为“乙选择产品且盈利”,事件为“一年后甲、乙两人中至少有一人投资获利”,,,
所以,所以
又因为,,所以.
故.
(2)假设丙选择产品进行投资,且记为获利金额(单位:万元),所以随机变量的分布列为:
则
假设丙选择产品进行投资,且记为获利金额(单位:万元),所以随机变量的分布列为:
则
当时,,选择产品和产品一年后投资收益的数学期望相同,可以在产品和产品中任选一个;
当时,,选择产品一年后投资收益的数学期望大,应选产品;
当时,,选择产品一年后投资收益的数学期望大,应选产品.
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,已知曲线(为参数),在以原点为极点,轴的非
负半轴为极轴建立的极坐标系中,直线的极坐标方程为.
(1)求曲线的普通方程和直线的直角坐标方程;
(2)过点且与直线平行的直线交于,两点,求点到,两点的距离之积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系下,已知圆O:,直线l:()与圆O相交于A,B两点,且.
(1)求直线l的方程;
(2)若点E,F分别是圆O与x轴的左、右两个交点,点D满足,点M是圆O上任意一点,点N在线段上,且存在常数使得,求点N到直线l距离的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知双曲线(a>0,b>0)的左顶点与抛物线y2=2px(p>0)的焦点的距离为4,且双曲线的一条渐近线与抛物线的准线的交点坐标为(-2,-1),则双曲线的焦距为( )
A. B. C. D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com