【题目】在长方体ABCD-A1B1C1D1中(如图),AD=AA1=1,AB=2,点E是棱AB的中点.
(1)求异面直线AD1与EC所成角的大小;
(2)《九章算术》中,将四个面都是直角三角形的四面体称为鳖臑,试问四面体D1CDE是否为鳖臑?并说明理由.
【答案】(1) (2)见解析
【解析】
(1)取CD中点F,连接AF,则AF∥EC,即∠D1AF为异面直线AD1与EC所成角,解三角形可得△AD1F为等边三角形,从而得到异面直线AD1与EC所成角的大小;
(2)证明DE⊥CE,进一步得到D1E⊥CE,可知四面体D1CDE是鳖臑.
解:(1)取CD中点F,连接AF,则AF∥EC,
∴∠D1AF为异面直线AD1与EC所成角.
在长方体ABCD-A1B1C1D1中,由AD=AA1=1,AB=2,
得
∴△AD1F为等边三角形,则.
∴异面直线AD1与EC所成角的大小为;
(2)连接DE,∵E为AB的中点,∴DE=EC=,
又CD=2,∴DE2+CE2=DC2,得DE⊥CE.
∵D1D⊥底面DEC,则D1D⊥CE,∴CE⊥平面D1DE,得D1E⊥CE.
∴四面体D1CDE的四个面都是直角三角形,
故四面体D1CDE是鳖臑.
科目:高中数学 来源: 题型:
【题目】某工厂生产某种产品的年固定成本为200万元,每生产千件,需另投入成本为,当年产量不足80千件时,(万元).当年产量不小于80千件时,(万元).每件商品售价为0.05万元.通过市场分析,该厂生产的商品能全部售完.
(1)写出年利润(万元)关于年产量(千件)的函数解析式;
(2)当年产量为多少千件时,该厂在这一商品的生产中所获利润最大?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列命题中,正确的有( )
A.向量与是共线向量,则点、、、必在同一条直线上
B.若且,则角为第二或第四象限角
C.函数是周期函数,最小正周期是
D.中,若,则为钝角三角形
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在三棱柱ABC-A1B1C1中,AA1C1C是边长为4的正方形.平面ABC⊥平面AA1C1C,AB=3,BC=5.
(Ⅰ)求证:AA1⊥平面ABC;
(Ⅱ)求二面角A1-BC1-B1的余弦值;
(Ⅲ)证明:在线段BC1存在点D,使得AD⊥A1B,并求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在平面直角坐标系中,圆的参数方程为(为参数).以坐标原点为极点,轴的正半轴为极轴建立极坐标系,直线的极坐标方程为.
(1)求圆的普通方程和直线的直角坐标方程;
(2)若直线与圆交于两点,是圆上不同于两点的动点,求面积的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com