精英家教网 > 高中数学 > 题目详情
4.如图,在四棱锥P-ABCD中,侧面PAD为正三角形,底面ABCD是边长为2的正方形,侧面PAD⊥底面ABCD,M为底面ABCD内的一个动点,且满足MP=MC,则点M在正方形ABCD内的轨迹的长度为$\sqrt{5}$.

分析 先找符合条件的特殊位置,然后根据符号条件的轨迹为线段PC的垂直平分面与平面AC的交线得到M的轨迹,再由勾股定理求得答案.

解答 解:根据题意可知PD=DC,则点D符合“M为底面ABCD内的一个动点,且满足MP=MC”
设AB的中点为E,根据题目条件可知△PAE≌△CBE,
∴PE=CE,点E也符合“M为底面ABCD内的一个动点,且满足MP=MC”
故动点M的轨迹肯定过点D和点E,
而到点P与到点C的距离相等的点为线段PC的垂直平分面,
线段PC的垂直平分面与平面AC的交线是一直线,∴M的轨迹为线段DE.
∵AD=2,AE=1,∴DE=$\sqrt{{2}^{2}+{1}^{2}}$=$\sqrt{5}$.
故答案为:$\sqrt{5}$.

点评 本题主要考查了直线与平面垂直的性质,以及公理二等有关知识,同时考查了空间想象能力,推理能力,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.如图,△ABC为等边三角形,EA⊥平面ABC,EA∥DC,EA=2DC,F为EB的中点.
(Ⅰ)求证:DF∥平面ABC;
(Ⅱ)求证:平面BDE⊥平面AEB.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.过抛物线y2=2px(p>0)焦点的直线l与抛物线交于A、B两点,以AB为直径的圆的方程为(x-3)2+(y-2)2=16,则p=(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知函数$f(x)=asinxcosx-{sin^2}x+\frac{1}{2}$的一条对称轴方程为$x=\frac{π}{6}$,则实数a=$\sqrt{3}$;函数f(x)的最大值为1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.设x,y为非零实数,a>0,且a≠1,给出下列式子或运算:
①logax2=3logax;
②loga|xy|=loga|x|•loga|y|;
③若e=lnx,则x=e2
④若lg(lny)=0,则y=e;
⑤若${2^{1+{{log}_4}x}}$=16,则x=64.
其中正确的个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.某校A,B,C,D四门课外选修课的学生人数如下表,现用分层抽样的方法从中选取15人参加学校的座谈会.
选修课学生人数
A20
B30
C40
D60
(1)应分别从A,B,C,D四门课中各抽取多少名学生;
(2)从抽取的15名学生中再随机抽取2人,求这2人的选修课恰好不同的概率;
(3)若从C,D两门课中抽取的学生中再随机抽取3人,用X表示其中选修C的人数,求X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.下列关系中正确的是(  )
A.$\sqrt{2}$∈QB.|-3|∉ZC.$\sqrt{4}$∈ND.π∉R

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.设函数f(x)为定义在R上的奇函数,当x≥0时,f(x)=2x+2x+b(b为常数),则f(-1)=-3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.用半径为$\frac{\sqrt{3}}{2}$的圆铁皮剪一个内接矩形,再以内接矩形的两边分别作为圆柱的高与底面半径,则该圆柱体积的最大值为(  )
A.πB.$\sqrt{2}$πC.$\sqrt{3}$πD.

查看答案和解析>>

同步练习册答案