精英家教网 > 高中数学 > 题目详情
给出三种函数模型:f(x)=xn(n>0),g(x)=ax(a>1)和h(x)=logax(a>1).根据它们增长的快慢,则一定存在正实数x0,当x>x0时,就有(  )
分析:先分别画出三种函数模型:f(x)=xn(n>0),g(x)=ax(a>1)和h(x)=logax(a>1)的示意图.观察图象发现,指数函数g(x)=ax(a>1)的函数值增长速度最快,其次是幂函数f(x)=xn(n>0),最后是对数函数h(x)=logax(a>1).根据它们增长的快慢从而得出结论.
解答:解:分别画出三种函数模型:f(x)=xn(n>0),g(x)=ax(a>1)和h(x)=logax(a>1)的示意图.
观察图象发现,指数函数g(x)=ax(a>1)的函数值增长速度最快,其次是幂函数f(x)=xn(n>0),最后是对数函数h(x)=logax(a>1).
根据它们增长的快慢,则一定存在正实数x0,当x>x0时,就有g(x)>f(x)>h(x).
故选D.
点评:本小题主要考查对数函数、指数函数与幂函数的增长差异等基础知识,考查数形结合思想.属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:单选题

给出三种函数模型:f(x)=xn(n>0),g(x)=ax(a>1)和h(x)=logax(a>1).根据它们增长的快慢,则一定存在正实数x0,当x>x0时,就有


  1. A.
    f(x)>g(x)>h(x)
  2. B.
    h(x)>g(x)>f(x)
  3. C.
    f(x)>h(x)>g(x)
  4. D.
    g(x)>f(x)>h(x)

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

给出三种函数模型:f(x)=xn(n>0),g(x)=ax(a>1)和h(x)=logax(a>1).根据它们增长的快慢,则一定存在正实数x0,当x>x0时,就有(  )
A.f(x)>g(x)>h(x)B.h(x)>g(x)>f(x)C.f(x)>h(x)>g(x)D.g(x)>f(x)>h(x)

查看答案和解析>>

科目:高中数学 来源:2010-2011学年浙江省杭州市高一(下)期末数学试卷(解析版) 题型:选择题

给出三种函数模型:f(x)=xn(n>0),g(x)=ax(a>1)和h(x)=logax(a>1).根据它们增长的快慢,则一定存在正实数x,当x>x时,就有( )
A.f(x)>g(x)>h(x)
B.h(x)>g(x)>f(x)
C.f(x)>h(x)>g(x)
D.g(x)>f(x)>h(x)

查看答案和解析>>

同步练习册答案