精英家教网 > 高中数学 > 题目详情
7.如图,正六边形ABCDEF中,$\overrightarrow{BC}$$+\overrightarrow{DE}$$+\overrightarrow{AF}$等于(  )
A.$\overrightarrow{EB}$B.$\overrightarrow{BE}$C.$\overrightarrow{AD}$D.$\overrightarrow{CF}$

分析 利用正六边形的性质、向量相等、向量三角形法则即可得出.

解答 解:正六边形ABCDEF中,$\overrightarrow{BC}=\overrightarrow{FE}$,$\overrightarrow{DE}=\overrightarrow{BA}$.
∴$\overrightarrow{BC}$$+\overrightarrow{DE}$$+\overrightarrow{AF}$=$\overrightarrow{BA}$+$\overrightarrow{AF}$+$\overrightarrow{FE}$=$\overrightarrow{BA}+\overrightarrow{AE}$=$\overrightarrow{BE}$.
故选:B.

点评 本题考查了正六边形的性质、向量相等、向量三角形法则,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

17.已知函数$f(x)=\left\{\begin{array}{l}2-|x|,x≤2\\{(x-2)^2},x>2\end{array}\right.$,若方程f(x)+f(2-x)=t恰有4个不同的实数根,则实数t的取值范围是($\frac{7}{4}$,2).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.若?x0∈(0,+∞),不等式ax-lnx<0成立,则a的取值范围是(  )
A.(-∞,$\frac{1}{e}$)B.(-∞,0)C.(-∞,e)D.(-∞,1)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知圆O:x2+y2=1与直线l:ax+by+2=0相切,则动点P(2a,3b)在直角坐标平面xoy内的轨迹方程为$\frac{x^2}{16}+\frac{y^2}{36}=1$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.设f(x)=x-$\frac{a-1}{x}$-alnx,a∈R.
(1)当a=1时,求曲线y=f(x)在点$(\frac{1}{2},\frac{1}{2}+ln2)$处的切线方程;
(2)当a>1时,若x=1是函数f(x)的极大值点,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知向量$\overrightarrow{a}$=(3,2),$\overrightarrow{b}$=(-1,2),且$\overrightarrow{a}$$•\overrightarrow{c}$=$\overrightarrow{b}$$•\overrightarrow{c}$>0,|$\overrightarrow{c}$|=3.
(Ⅰ)求向量$\overrightarrow{c}$的坐标;
(Ⅱ)求|3$\overrightarrow{a}$-$\overrightarrow{c}$|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知a∈R,直线l1:(2a+1)x+2y-a+2=0与直线l2:2x-3ay-3a-5=0垂直.
(1)求a的值;
(2)求以l1,l2的交点为圆心,且与直线3x-4y+9=0相切的圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知数列{an}满足a1=$\frac{1}{3}$,an+1=$\frac{{a}_{n}}{2{a}_{n}+1}$(n∈N*),则$\frac{{a}_{3}+{a}_{1005}}{{a}_{3}{a}_{1005}}$=(  )
A.2015B.2016C.2017D.2018

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.如图,在直三棱柱ABC-A1B1C1中,∠ACB=90°,AC=BC=1,CC1=2,则异面直线A1B与AC所成角的余弦值是$\frac{\sqrt{6}}{6}$.

查看答案和解析>>

同步练习册答案