精英家教网 > 高中数学 > 题目详情
19.各项都是正数的等比数列{an},若a2,$\frac{1}{2}$a3,2a1成等差数列,则$\frac{{a}_{3}+{a}_{4}}{{a}_{4}+{a}_{5}}$的值为(  )
A.2B.2或-1C.$\frac{1}{2}$D.$\frac{1}{2}$或-1

分析 设等比数列{an}的公比为q,由题意得q>0,根据条件和等差中项的性质列出方程求出q的值,利用等比数列的通项公式化简$\frac{{a}_{3}+{a}_{4}}{{a}_{4}+{a}_{5}}$即可得答案.

解答 解:设等比数列{an}的公比为q,则q>0,
因为a2,$\frac{1}{2}$a3,2a1成等差数列,
所以2×$\frac{1}{2}$a3=a2+2a1,则${a}_{1}{q}^{2}={a}_{1}q+2{a}_{1}$,
即q2-q-2=0,解得q=2或q=-1(舍去),
所以$\frac{{a}_{3}+{a}_{4}}{{a}_{4}+{a}_{5}}$=$\frac{{a}_{3}+{a}_{4}}{{a}_{3}q+{a}_{4}q}$=$\frac{1}{q}$=$\frac{1}{2}$,
故选:C.

点评 本题考查等比数列的通项公式,以及等差中项的性质,考查整体思想,方程思想,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10.在△ABC中,设$\overrightarrow{AB}$=(0,4),$\overrightarrow{AC}$=(2,k),且△ABC是直角三角形,则k的取值集合是{0,2,4}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.若直线经过点A(-1,2),点B(3,2),则直线的斜率(  )
A.2B.-1C.0D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.在平面直角坐标系xOy中,以坐标原点O为极点,x轴正半轴为极轴建立直角坐标系,将曲线C1$\left\{\begin{array}{l}{x=cosθ}\\{y=sinθ}\end{array}\right.$(θ为参数)上所有点的横坐标、纵坐标分别伸长为原来的2和$\frac{1}{2}$后得到曲线C2
(1)求曲线C1的极坐标方程和曲线C2的普通方程;
(2)已知直线1:ρ(cosθ+2sinθ)=4,点P在曲线C2上,求点P到直线l的距离的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的上、下顶点分别为A,B,右焦点为F,点P在椭圆C上,且OP⊥AF.
(1)若点P坐标为($\sqrt{3}$,1),求椭圆C的方程;
(2)延长AF交椭圆C于点Q,若直线OP的斜率是直线BQ的斜率的2倍,求椭圆C的离心率;
(3)求证:存在椭圆C,使直线AF平分线段OP.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=|x-10|+|x-20|,且满足f(x)<10a(a∈R)的解集不是空集.
(Ⅰ)求实数a的取值范围;
(Ⅱ)求a+$\frac{4}{{a}^{2}}$的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.设x,y满足约束条件$\left\{\begin{array}{l}{3x-y-2≤0}\\{x-y≥0}\\{x≥0,y≥0}\end{array}\right.$,若目标函数z=ax+by(a>0,b>0)的最大值为1,则$\frac{1}{a}$+$\frac{4}{b}$的最小值为9.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.求函数$y={sin^2}x+cosx+1,x∈[-\frac{π}{2},\frac{π}{2}]$的最大、小值,及取得最大、小值时x的取值集合.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知$|\vec a|=1,|\vec b|=2,\vec a•\vec b=1$,则$|\vec a+\vec b|$等于(  )
A.7B.$\sqrt{7}$C.3D.$\sqrt{3}$

查看答案和解析>>

同步练习册答案