A. | 2 | B. | 2或-1 | C. | $\frac{1}{2}$ | D. | $\frac{1}{2}$或-1 |
分析 设等比数列{an}的公比为q,由题意得q>0,根据条件和等差中项的性质列出方程求出q的值,利用等比数列的通项公式化简$\frac{{a}_{3}+{a}_{4}}{{a}_{4}+{a}_{5}}$即可得答案.
解答 解:设等比数列{an}的公比为q,则q>0,
因为a2,$\frac{1}{2}$a3,2a1成等差数列,
所以2×$\frac{1}{2}$a3=a2+2a1,则${a}_{1}{q}^{2}={a}_{1}q+2{a}_{1}$,
即q2-q-2=0,解得q=2或q=-1(舍去),
所以$\frac{{a}_{3}+{a}_{4}}{{a}_{4}+{a}_{5}}$=$\frac{{a}_{3}+{a}_{4}}{{a}_{3}q+{a}_{4}q}$=$\frac{1}{q}$=$\frac{1}{2}$,
故选:C.
点评 本题考查等比数列的通项公式,以及等差中项的性质,考查整体思想,方程思想,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 7 | B. | $\sqrt{7}$ | C. | 3 | D. | $\sqrt{3}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com