【题目】定义的零点为的不动点,已知函数.
Ⅰ.当时,求函数的不动点;
Ⅱ.对于任意实数,函数恒有两个相异的不动点,求实数的取值范围;
Ⅲ.若函数只有一个零点且,求实数的最小值.
【答案】(1) 的不动点为3,-1;(2) ;(3) 的最小值为1.
【解析】试题分析: (1)将代入函数的表达式,根据零点概念求出方程的根;(2)把函数恒有两个相异的不动点,转化为对于任意实数,恒有两个不等的实数根问题,即对任意实数都成立,求出b的范围即可;(3) 函数只有一个零点,则,利用分离参数法得出,根据基本不等式求出最值.
试题解析:(1),
,
或-1.
故函数的不动点为3,-1.
(2) 对于任意实数,函数恒有两个相异的不动点,
则对于任意实数,恒有两个不等的实数根.
所以,恒成立,
所以,
所以对任意实数都成立,
所以,
所以.
(3),函数只有一个零点,,
则,
所以,
所以 .
当且仅当时等号成立,
所以,的最小值为1.
科目:高中数学 来源: 题型:
【题目】已知椭圆:()的离心率为,连接椭圆的四个顶点得到的四边形的面积为.
(1)求椭圆的方程;
(2)设椭圆的左焦点为,右焦点为,直线过点且垂直于椭圆的长轴,动直线垂直于点,线段的垂直平分线交于点,求点的轨迹的方程;
(3)设为坐标原点,取上不同于的点,以为直径作圆与相交另外一点,求该圆面积的最小值时点的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点是椭圆上任一点,点到直线的距离为,到点的距离为,且.直线与椭圆交于不同两点(都在轴上方),且.
(1)求椭圆的方程;
(2)当为椭圆与轴正半轴的交点时,求直线方程;
(3)对于动直线,是否存在一个定点,无论如何变化,直线总经过此定点?若存在,求出该定点的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】A已知直线的参数方程为(为参数),在直角坐标系中,以为极点, 轴正半轴为极轴建立极坐标系,圆的方程为
(1)求圆的圆心的极坐标;
(2)判断直线与圆的位置关系.
已知不等式的解集为
(1)求实数的值;
(2)若不等式对恒成立,求实数的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com