精英家教网 > 高中数学 > 题目详情

【题目】定义的零点的不动点,已知函数.

Ⅰ.当时,求函数的不动点;

Ⅱ.对于任意实数,函数恒有两个相异的不动点,求实数的取值范围;

Ⅲ.若函数只有一个零点且,求实数的最小值.

【答案】(1) 的不动点为3,-1;(2) ;(3) 的最小值为1.

【解析】试题分析: (1)代入函数的表达式,根据零点概念求出方程的根;(2)把函数恒有两个相异的不动点,转化为对于任意实数恒有两个不等的实数根问题,对任意实数都成立,求出b的范围即可;(3) 函数只有一个零点,则利用分离参数法得出,根据基本不等式求出最值.

试题解析:(1)

-1.

故函数的不动点为3,-1.

(2) 对于任意实数,函数恒有两个相异的不动点,

则对于任意实数恒有两个不等的实数根.

所以恒成立,

所以

所以对任意实数都成立,

所以

所以

(3),函数只有一个零点,

所以

所以

当且仅当时等号成立,

所以的最小值为1.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数是自然对数的底数.

(1)讨论函数上的单调性;

(2)当时,若存在,使得,求实数的取值范围.(参考公式:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)求函数的单调区间;

(2)若满足:对任意的,都有恒成立,试确定实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 .

(1)求函数的单调递减区间;

(2)求函数在区间上的最大值及最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆)的离心率为,连接椭圆的四个顶点得到的四边形的面积为

(1)求椭圆的方程;

(2)设椭圆的左焦点为,右焦点为,直线过点且垂直于椭圆的长轴,动直线垂直于点,线段的垂直平分线交于点,求点的轨迹的方程;

(3)设为坐标原点,取上不同于的点,以为直径作圆与相交另外一点,求该圆面积的最小值时点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点是椭圆上任一点,点到直线的距离为,到点的距离为,且.直线与椭圆交于不同两点都在轴上方,且.

1求椭圆的方程;

2为椭圆与轴正半轴的交点时,求直线方程;

3对于动直线,是否存在一个定点,无论如何变化,直线总经过此定点?若存在,求出该定点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线 的焦点为,过点的直线相交于两点,点关于轴的对称点为

(Ⅰ)判断点是否在直线上,并给出证明;

(Ⅱ)设,求的内切圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,曲线与直线)交于两点.

1)当时,分别求在点处的切线方程;

2轴上是否存在点,使得当变动时,总有?说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】A已知直线的参数方程为为参数),在直角坐标系中,以为极点, 轴正半轴为极轴建立极坐标系,圆的方程为

(1)求圆的圆心的极坐标;

(2)判断直线与圆的位置关系.

已知不等式的解集为

(1)求实数的值;

(2)若不等式恒成立,求实数的取值范围.

查看答案和解析>>

同步练习册答案